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In a series of papers, O'Raifeartaigh' claimed
an interesting negative result, which states
given any real Lie algebra containing the Poin-
care Lie algebra 6', and an irreducible repre-
sentation of it in an Hilbert space & so that
I'~I'~ is self-adjoint, then if there exists one
eigenvalue m of I'&I'I", it is all the spectrum.
This result was criticized by the authors, ' who

showed an error in the proof. Recently, Jost'
was able to prove the following much weaker
result: Given a unitary continuous irreducible
representation of a connected Lie group contain-
ing the Poincare group on $C, the spectrum of
P&Pl" is a connected set (thus, if there is an
isolated eigenvalue, it is all the spectrum).
All hypotheses are needed in the proof, though
not dictated by physical necessities. It is the
aim of this Letter to present a counter exam-
ple which might be of physical interest to the
original conjecture, and thereby to clarify the
situation.

Let us first explain some possible motivations:
(a) In the present state of the unification prob-
lem, there is no reason to prefer a group struc-
ture to a Lie-algebra one for internal or uni-
fied symmetries. (b) In this counter example,
we shall deal with local representations (i.e. ,
of Lie algebras). Its physical sense can be
understood by a very simple analogy: For a
free electron in one dimension, the Hamiltonian

P /2m is represented by a self-adjoint opera-
tor in I'(-~, ~) which has a continuous spec-
trum, ' if there is an infinite potential well be-
tween a and b, we know we have a discrete spec-
trum that can equivalently be obtained by taking
the spectrum of the free Hamiltonian self-ad-
joint in I, (a, b) with the suitable boundary con-
ditions.

And now to the example itself. Let su(2, 2)
be the Lie algebra of the conformal group. Con-
sider the formally skew-adjoint operators
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where x = x~xl", x& =@~'xp, &~ = &/&x~ (p, ~

=1, 2, 3, 4). When these operators act (e.g. )

on distributions, we check easily that they ver-
ify the commutation relations of su(2, 2) (cf. ,
e.g. , Flato, Sternheimer, and Vigier, and Bohm,
Plato, Sternheimer, and Vigier~). Moreover,
this defines an algebraically irreducible repre-
sentation of su(2, 2) on the vector space 6[x„
x„x„x,] of polynomials in four unknowns (the
Ap raise the degree, the && lower it, and the
M~q and A, leave it unchanged) —we get semi-
reducible representations of 5' when we repre-
sent it by (M», A&) or (M~, p, P~ ).

Now let be a topological vector space of
(generalized or not) functions, in which the
polynomials (properly weighted if necessary)
form a dense subspace [contained in the domains
of all operators of (1) if they are not defined
everywhere]. By similar arguments (at les.st
if the possible weight is a polynomial), we see
that (1) defines a topologically irreducible rep-
resentation (i.e. , there is no proper closed
subspace of X on which the operators are dense-
ly defined and which is invariant). In the fol-
lowing, we shall consider the space 3C=I-'(Q),
where Q is a bounded domain in R', more pre-
cisely in our case the cube Q: j0- x&-a) of
boundary &Q:(x& =0 or a, 0~x(&)~'~a}, where
we define the four three-component vectors
x(&)'=(x(&)&') (pt v, x( )

' ——x ), so that the
four-component vector x = (x~3 can be written
x = (x„x&„'), for instance.

One checks easily that (1) defines skew-sym-
metric operators on the domain of absolutely
continuous (ac) functions, with &' derivatives,
vanishing on &Q; more generally, all finite-
order operators of the enveloping algebra of
isu(2, 2) (multiply all generators by i) are sym-
metric (Hermitian) on the (dense) domain 6o (Q)
of infinitely differentiable functions with com-
pact support inside Q, when considered as dif-
ferential operators, ' and have self-adjoint ex-
tensions that are restrictions of the same dif-
ferential operators acting in the distribution
way.

We shall now restrict our attention to the
mass operator. It is clear' that -8&' is self-
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adjoint and positive on the domain D(P& ) of
functions f in L'(Q) with &~f ac with respect
to x&, 8~ fEL'(Q), and with the boundary con-
ditions f(0, x (&)') =f(a, x (& )'), &&f(0, x (&)')
= &~f(a, x (&)'); as such, it is the square of the
operator i&p, on D(Pp) = PCL', f ac in x&,
&+EL', f(0, x(~)') =f(&, x(~)')). [If we take f(0,
x(~)') =f(a, x(&)') =0 for D(PlL'), we get an op-
erator which is not the Hilbert-space square
of ia~ on D(Plj), but is still -(8/ex~)2; in this
case, we shall have functions vanishing on BQ

for the domain of

4

II sin-~ &
Q P, Pj

with n~) 1 (without summation) for eigenfunc-
tions, and (m/a)A'instead of (2m/a)EX for the
levels. ]

We can thus define the symmetric operator
= &~' —(S,'+ S, + &o') on the common domain

4
D = 6 D(P 2).

0
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Now, any function fCL'(Q) has a Fourier devel-
opment

2irf-QA-exp. —n x
Q P,

where n=(n&), n&EZ (integer); if fCD„we
have equality, and moreover
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I et E(m) denote the projector on the subspace~ generated by the exp[(2im/a)n&x&] for n~n&
=mgZ (any integer can be written, in many

ways, as n~nP); E(m=~, and E(m) is a
resolution of identity (cf. Ref. 5). Therefore

M = (2w/a)2 Q mE(m)

is a well-defined self-adjoint operator with
domain
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M c'oincidences with on D„' moreover, it
is clearly the closure of, which is therefore
essentially self-adjoint on D, (and has the same
spectrum).

I'&I'I" is therefore here represented by a
self-adjoint operator I with a purely discrete
spectrum, consisting of isolated eigenvalues.
The formal calculation of O'Raifeartaigh' is
here pointless as it is justified only on the space
X~e (cf. Ref. 2) which is {0)—in fact, the I»,
A&, and &, do not leave&~ invariant, when-

ever they are defined on it. Moreover, Jost's
hypotheses' do not apply, since we cannot get
from (1) a unitary representation of the group
SU(2, 2), because of lack of analytic vectors
(though one-parameter groups can be defined
by means of spectral resolution).

In addition, we get the "mass formula" m
=N"'m„where N is an integer [and mo=(2w/
a)]. If we take, for instance (as in Sternheimer, '
where N'" is an integer), the pion mass m~
= [—,'(m~+'+m~o')]'" as mo, we get an experimen-
tally well-verified formula (there are no coun-
ter examples, although there are many gaps,
and the formula is not very significant for large
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