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Although the analytic properties of the Schro-
dinger equation have been extensively studied,
they have rarely been put to use in any actu-
al calculational problem. In this paper we re-
port the solution of a potential scattering prob-
lem for negative (unphysical) values of the en-
ergy E, and the analytic continuation of these
numerical results to E&0, which yieMs the
actual phase shifts. While this method has
some advantages over the usual methods for
solving the Schrodinger equation, we anticipate
that the real value of the new approach will
be realized in the study of three-body scatter-
ing, and in relativistic (Bethe-Salpeter) equa-
tions.

We start by considering the Schrodinger equa-
tion

(E-H) P- = 0
k

with the decomposition

(2)

and the "plane-wave" reference states yk which
satisfy

(E H) p-= 0. —
0 k

The T matrix is defined, as a function of a
complex energy variable M), as

T(w) = V+ V(w-H, ) 'T(w),

and the scattering amplitude is the matrix ele-
ment of this T between plane-wave states at
se =E+ie. The analytic structure of T in which
we are interested concerns only the variable
se, and not the momentum k of the plane waves.

In order to deduce the analytic properties
of T(w) we write the formal solution of Eq. (4):

T(w) = V+ V(w-H) 'V.

Knowing the spectrum of H we conclude that
T(w) may have simple poles at negative real
w (bound states), and it has a line of discon-
tinuity along the positive real axis (scattering
cut); everywhere else in the complex w plane
T(w) is analytic. Further examination of this
cut leads us to conclude that we have simply
a square-root branch point at M) =0.

Our plan is this: First calculate T(w) at sev-

eral real negative values of M', then extrapo-
late from these numbers to get T(k /2m).

The calculation of the first step is really
much easier than the direct solution of the Schro-
dinger equation at w =k'/2m. Looking at Eq. (4)
one sees that our method involves a nonsingu-
lar integral equation, while the usual method
leads to a singular integral equation. Alterna-
tively, in coordinate space, we must solve
the inhomogeneous Schrodinger equation,

(w-H)g- = Vy- (6a)

to get T as

(6b)

For real negative se the asymptotic behavior
of gw at large distances is that of a decaying
exponential; and the entire calculation is thus
confined to a finite region, as for real bound-
state calculations. The example we studied
was that of s waves in the potential

2 -r
e

and we solved Eqs. (6) by a variational meth-
od essentially that of Kohn and Hulthdn, ' but
simplified by the neglect of the scattered-wave
terms.

In order to continue T to I & 0, we fit the
computed values of T(w) at several negative
values of w to a ratio of polynomials in v —w.
From the integral equation for T, it can be
seen that T-V-O(1/w) as w-~. This "glob-
al constraint" was incorporated in the fitting
procedure by representing T- V as P~(K-w)/
Q&+2(v -w) where'

N N+2
P = g a.(v-w), Q =1+ P b, (v- )w. (7)

N . j ' N+2 . j
g

—0

The constraint is essential for the success
of the continuation, since a function small at
M &0 could be large for M)&0 and dominate the
behavior at physical w =k'/2m. Evaluating

P&/Q&+2 at w =k'/2m we obtain T in the form
-1/(n-i13) where n should equal k cot5 and P/k

'
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Order of
fitting

N n =tanh/k

Born approximation
1
2

3
4
5

Exact

+2.0
—8.0605
-8.3048
—7.9701
-7.9432
—7.9870
—7.9114

0.0
0.9577
0.9351
0.9865
0.9928
0.9833
1.0000

Table I. Results of analytic continuation of the off-
shell T matrix for the Yukawa potential of strength g
= —2atk =0.

k', the agreement between calculated and known
results being 1% or better. (The unitarity con-
dition P/k =1 can serve as a measure of the
accuracy in cases where the exact answer is
not known. )

Still lacking is some firm mathematical un-
derstanding of the convergence of this analyt-
ic continuation, and the dependence on the lo-
cation and accuracy of the input numbers. Nev-
ertheless, the success we have found with our
first crude attempts convinces us that the meth-
od is basically sound; and we look forward to
a broad range of applications as well as a re-
finement of the numerical techniques.

should equal +1 (unitarity!). In Table I are
shown results of this extrapolation for the po-
tential of strength g= -2 at k'=0. For this
value of g there is a bound-state pole in T(zo)

at very small negative se', and our extrapola-
tion around this pole represents a very tough
test of the present method. 'We achieved sim-
ilarly good results at several values of g and

~See T.-Y. Wu and T. Ohmura, Quantum Theory of
Scattering (Prentice-Hall, Inc. , Englewood Cliffs,
New Jersey, 1962), Sec. D.

2This construction is reminiscent of the Pade method;
see G. A, Baker's review article in Advances in The-
oretical Physics (Academic Press, Inc. , New York,
1965), Vol. 1. However, that approach relies entirely
on the Born series, while we have no such bias.
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The equal-time commutator algebra of quark
currents, ' combined with a causal representa-
tion for vertex functions or forward scattering
amplitudes such as the Deser-Gilbert-Sudar-
shan' (DGS) formula, provides constraints on
these amplitudes. ' There are numerous appli-
cations of these constraints, some of them stud-
ied independently by Bjorken' especially in con-
nection with electromagnetic renormalization.
In this note, we discuss the general theory brief-
ly, and give the constraints in the form of sum
rules in the vertex function VVP (V = vector
particle, P = pseudoscalar).

The DGS representation for causal commu-
tators reads

(2~) &p! [~( ), ~ (y)]!»
1 2

d 2d d4 E(q, ) -iq(x-y)-iPy+iPP(x-y)~ ~

(2~)'

2 2 2xH(z, p)V(q -x ),

where P refers to a single-particle state of

momentum p (energy E). The same spectral
function II appears in the matrix element of
the time-ordered product:

(2E)'"(p!T(~(x)~'(y))! o&

"dA. dPd q e
4 iq(x y) -ipy+i p-p (x-y)-

i(2E)' q —A, +is

x H(l. 2, p). (2)

M(k, P) =E (k)E (P—k)M (k, P),
p, v

(k, P) =E P k M(k, P).Pv PPQ

These are support conditions on H: 0& p & -1,
X'& 0 (in the absence of zero-mass intermedi-
ate states). H may also depend on P', but this
dependence will not be made explicit. It is un-
derstood that the integral over d4q is to be done
first.

Now consider the VVP three-point function
for a pion of momentum P. We write for the
invariant amplitude
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