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situation. "
These considerations for relatively low tem-

peratures clearly do not apply to those nearer
to T~ as here the effect of the microwaves is
initially to increase the critical current. As
yet we have no explanation for this effect.
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We have observed the photoelectron count-
ing distribution produced by light from a sin-
gle-mode cw gas laser operating at output pow-
ers as low as twice the threshold output. In
this region we are able to detect deviations
from the predictions of linearized oscillator
theory. Moreover we are able to fit all our
observed counting distributions to one theoret-
ical distribution containing a single parame-
ter which varies with laser excitation. Mea-
surements of single-mode laser counting dis-
tributions below threshold have been reported
previously. '&' Preliminary measurements on

lasers near but above threshold have also been
reported. ' '

The laser consisted of a dc He-Ne discharge
tube with Brewster-angle windows in a 15-cm
cavity; the laser wavelength was 6328 A. The
axial mode separation is 1000 Mc/sec, which

is larger than the full Doppler width of the Ne
fluorescence line. An aperture was placed
in the cavity to reduce the Q of off-axis modes
and to reduce the background light from the
discharge. A piezoelectric driver on one of
the mirror mounts was used to tune an axial

mode to the center of the fluorescence line.
Under these conditions only a single mode was
important for the excitations used in these ex-
periments. The laser output was stabilized
against slow drifts by means of feedback con-
trol of the discharge current; the feedback
time constant was 0.03 sec.

The counting distributions were obtained us-
ing an S-20 photomultiplier, a 100-Mc/sec
discriminator, a, gated 100-Mc/sec sealer,
and a multichannel analyzer. The number of
counts n registered during a single 0.5- p.sec
counting period was used as an address, and

a one was added to the memory register of
the nth channel. The process was cycled at
a 16-kc/sec rate until about 10' samples were
obtained. This normally required less than
10 sec. The accumulated distribution was read
onto punched cards for data processing. A

variable attenuator in front of the photomulti-
plier was used to maintain an average count-
ing rate of 2.5 per counting period independent
of laser excitation. Under these conditions,
dead-time and other systematic effects were
found to be constant and relatively unimportant.
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Theories of laser oscillators which avoid the usual linearizing assumptions have been given by Ris-
ken' and also by I ax and Hempstead. ' These authors solve the Fokker-Planck equation for the am-
plitude probability density of the rotating-wave van der Pol oscillator. From their results for the
steady-state amplitude, one can write down the probability density for the laser output intensity.
Using Risken's result, in a different notation, and supplying the normalization, we have

P(I) = exp —,+ „, ; I)0.2 exp( —
I zo

~

') I' 2wI
7/'Io 1 + erf

Here I, is the average output intensity at threshold (zu =0), and w is a, parameter which varies from
large negative to large positive values as the laser is brought from a state far below to a state far
above threshold. The average output intensity I as a function of m is

(2)

Above threshold (w)0), the counting distribution corresponding to Eq. (1) may be found by the usual
method' to be

n
D exp( wD+D'/4) ~ n m n m+1 — n mn--m +1 2

E'" n! 1+erf(w) m 2 2
m =0

Here D=E"2nIOT and C =us-D/2, where n is
the detector efficiency in electron counts per
second per watt, and T is the counting inter-
val; y is the incomplete gamma function, I"

is the ordina. ry ga.mrna function, and (m) is
a binomial coefficient. Below threshold (where
w and C are both negative) the counting distri-
bution differs from Eq. (3) only in that the sign
of the incomplete gamma function is always
negative.

Note that since I, depends on the laser con-
figuration but not on the excitation, Eq. (3)
gives p(n) for all output powers in terms of
the variation of the single parameter se. Fur-
thermore, since zv is related to the output pow-
er by Eq. (2) we actually have p(n) as a func-
tion of the output intensity for a given laser.

We now compare the predictions of Eqs. (2)
and (3) with experiment. Figure 1 shows a
plot of the reduced factorial moment H2 = f(n(n
-1))/(n)') —1 vs I/I, . For a. Poisson distribu-
tion H, =0; for a geometric (Bose-Einstein)
distribution H, =1. The solid line is the theo-
retical result from Eqs. (2) and (3); the points
were obtained from analysis of observed count-
ing distributions. Since Io cannot be determined
experimenta. lly, it was used as the one param-
eter to be adjusted to give the best fit between
theory and the experimental data above thresh-
old. The agreement of theory and experiment
is seen to be very good even at the lowest out-

!
put powers at which the laser could be oper-
ated stably.

The coherence time of the intensity fluctua-
tions at I/ID =17 was determined to be 13 p, sec
by measuring the single-detector noise spec-
trum. Thus in all cases reported the counting
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FIG. 1. The reduced factorial moment B2 plotted
against the normalized output intensity I/Io in the re-
gion of threshold. The solid line is H2 for the nonlin-
ear oscillator distribution and the dots are experimen-
tal values. The counting period was 0.5 psec, and the
number of samples at each point was about 10 .
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time of 0.5 p.sec was shorter than the noise
correlation time.

Some data taken below threshold are also
shown in Fig. 1. The error bars indicate the
standard deviation for five or six runs at each
output power. All the distributions observed
below threshold are the geometric distribution
within the experimental uncertainty. The la-
ser stability will have to be further improved
in order to follow the curve closer to thresh-
old from below.

A typical counting distribution obtained just
above threshold at I/Io = 3.25 is shown in Fig. 2.
For comparison we show both the Poisson dis-
tribution for the same n and the nonlinear os-
cillator distribution which gave the best fit
to the data. It will be seen from Fig. 2 that
the distribution of Eq. (3) is flatter than the
Poisson distribution and has a longer tail; these
differences are due to the intensity noise.

Well above threshold where the intensity fluc-
tuations are relatively small, the output of
the nonlinear laser oscillator can be represent-
ed as a linear superposition of an amplitude-
stabilized field and a narrow-band random noise
field. The counting distribution for this situ-
ation has been derived by Glauber' and by Lachs, "
and in the form given by Lachs is
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FIG. 2. Counting distribution observed just above
threshold (solid line). The Poisson distribution for the
same n (dotted lines) and the nonlinear oscillator distri-
bution giving the best fit (dashed line) are also shown.
For n = 7, 8, and 9 the nonlinear oscillator and ob-
served distributions are coincident.

p(n) =
~

I expl
l'1+nT (1+nZ ) (1+n7)'l

-n
x~j', -n', 1;'n +n ')' (4)

where, E, is a confluent hypergeometric func-
tion and where nT and n~ are the average num-

bers of photons in the noise signal and the am-
plitude-stabilized signal, respectively. This
distribution differs from Eq. (3) in two impor-
tant respects. First, it represents the oscil-
lator output as a linear superposition of two

independent fields; second, for each output
power of the laser it involves two independent
parameters which are not individually related
to the laser power. In obtaining the best fit
of this hypergeometric distribution to the ob-
served data, we used the relations n =nT+n&
and H2 =nT(nT+2ng)/n' to determine nT and

nC o

For purposes of comparison we have com-
puted for our observed counting distributions
the best fit by (a) a Poisson distribution, (b) the

hypergeometric distribution of Eq. (4), and
(c) the nonlinear oscillator distribution of Eq. (3).
As a measure of the goodness of the fit we have
used the quantity chi squared, defined as

[P (obs)-P (theory)]'
=N n

s ~ P (theory)
n

where the sum is over all values of n for which
there are more than five samples. N~ is the
total number of samples and was about 10' in
all cases. In Table I we show the values of
the chi squared obtained from six of the dis-
tributions represented in Fig. 1. The most
striking result is that in every case except
I/Io =13.7, the nonlinear oscillator distribution
fits the observations significantly better than
either the Poisson or the hypergeometric dis-
tributions. Even at output powers 14 times
threshold there are noticeable deviations from
a Poisson counting distribution. At this point,
however, the quasilinear theory is quite satis-
factory, as shown by the fact that Eq. (4) gives
as good a fit as Eq. (3). As the laser is brought
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Table I. Chi squared test of fit of counting distribu-
tions above threshold.

I /Ip

X2

Nonlinear
Poisson Hypergeometric oscillator

2.1
2.7
3.3
4.6
7.7

13.7
White light

26 000
17300

6100
1600
380

63
13

760
500
245

50
32
14

168
70
60
28
27
13

closer to threshold the Poisson distribution
of course becomes completely inadequate, '

moreover, the nonlinear oscillator distribu-
tion soon begins to show its superiority as a
description of the laser output. For example,
at I/lp =2.7 chi squared for the hypergeomet-
ric distribution is seven times greater than
for the nonlinear oscillator distribution. "

It will be noted that for the while-light test
run there was no significant deviation from
a Poisson distribution. For the nine degrees
of freedom typical of our data, the probabil-
ity of observing a value of y greater than 13
due to chance is about 20%. Under the condi-
tions of our experiment y' ranged from 5 to
15 for the white-light tests. Chi squared is
a statistical measure and must be expected
to vary from run to run.

The fact that X' for the nonlinear distribution
at I/Ip &13.7 is larger than can be accounted
for by chance alone is due to the fact that when

the laser is brought very close to threshold
it becomes hypersensitive to external pertur-
bations. The resulting intensity variations
cause systematic changes in the observed count-

xng dsstrxbutxons. These changes are much
smaller than the great changes in the distri-
butions which occur as threshold is approached
and which are due to the nonlinear nature of
the oscillator.
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