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APPARENT HIGH-FREQUENCY STABILITY OF A HIGHLY ANISOTROPIC PLASMA*
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Many of the experiments designed for the
production of energetic plasmas have exhibit-
ed intense rf emission at the ion-cyclotron
frequency and its harmonics. ' In most of the
theoretical attempts to explain the origin of
the associated electric fields, the anisotropy
of the trapped-proton velocity distribution plays
a significant role. In DCX-2 it has been deter-
mined that, under certain controllable operat-
ing conditions, a highly anisotropic plasma is
produced as a result of an instability among
the injected particles. This plasma may be
used to test these theories. Recently, this
plasma has been produced with gas dissocia-
tion, and is found to be free from rf radiation
after the input beam has been turned off. The
plasma density has been found to exceed sig-
nificantly the highest instability threshold pre-
dictions of the theory of Soper and Harris' or
that of Guest and Dory' which is more close-
ly tailored to the experiment.

The plasma in DCX-2 is produced by inject-
ing 540-keV molecular ions and accumulating
the dissociated 270-keV protons between mag-
netic mirror coils spaced 164 inches apart. 4

The mirror ratio is 3.3:1. The intervening
field is uniform at 11.4 kG except for a slight
(but essential) depression in the central 60

inches, which traps the plasma to be discussed
below. The beam current in these experiments
averages 35 mA over the beam duration (-0.5
sec). The neutral hydrogen pressure required
to produce the instability which results in the
anisotropic plasma is (1-5)x10 ' Torr.

Charge-exchange neutrals, from collisions
of the trapped energetic protons with the par-
ticles of the background gas, are detected in
energy-sensitive barrier detectors at the vac-
uum wall. The detectors are collimated to
view particles emitted in a vertical fan of +20
with a 0.1' horizontal (para, llel to the field)
acceptance angle. Horizontal angles to +30'
are scanned during successive beam-on inter-
vals. In Fig. 1, we show the distribution of
charge-exchange particles as a function of this
angle, or equivalently, of the pitch angle of
the helical trajectory of the protons. The strong
central peak centered at 0' corresponds to a
group of particles with an average density of
-1&&108 ions/cm' (volume of 7.5&&10 cm') trapped
in a very shallow mirror (mirror ratio approx-
imately 1.001) produced in the central region
of the DCX-2 magnetic field. The energy dis-
tribution of these particles has been measured
and is shown in Fig. 2. From the observed
distribution, the ratio of the perpendicular to
parallel "temperatures" is 10'. The particles
constitute a highly anisotropic plasma ("cen-
tral-peak plasma" ) which, after the injected
beam is off, is suprisingly stable against mi-
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FIG. 1. Counting rate of charge-exchange neutral par-
ticles to a collimated silicon-barrier detector as a func-
tion of pitch angle of the trapped proton in its helical
trajectory.

FIG. 2. Energy spectrum of trapped protons as de-
termined from the charge-exchange neutral particles
reaching the collimated detector scanned across the
central-peak plasma. The points above 600 keV repre-
sent averages over a number of data values. Note the
spread in energy about the trapping energy of 270 keV.
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croinstabilities at ion cyclotron harmonics.
Electrostatic probes sensitive to radial elec-

tric fields are used to determine the frequen-
cy spectrum of electric fields seen at the walls
of the vacuum chamber. Intense radiation is
seen at the H,+ and H+ cyclotron harmonics
when the beam is on. However, these fields
decay rapidly to noise (a change of more than
40 dB) in about a millisecond after the beam
is cut off although the energetic ion plasma
has not changed appreciably in this time. The
density decay indicates that half of the parti-
cles remain after 0.25 sec. The measurement
of density from the energy spectrum during
equilibrium yields the same value as the inte-
gral of the charge-exchange flux after the beam
is shut off implying that all of the losses dur-
ing the decay are by charge exchange. An ar-
ray of neutral-particle detectors gives no evi-
dence for spread of the fast protons along the
field after the beam is off. '

The velocity-space distribution of the cen-
tral-peak plasma is rather closely modeled
by the theory of Guest and Dory. This theory
predicts that in an infinite homogeneous plas-
ma of anisotropic fast ions and cold (less than
100 eV) plasma, waves at the Nth harmonic
of the ion gyrofrequency will grow if (T ~~/Tz).
is sufficiently low and ape/&ucz&¹ The observed
anisotropy is enough to permit -500 harmon-
ics to grow; the density should limit this num-
ber to -5. The absence of all rf fields implies
that the actual threshold density is at least 40
times greater than that predicted from infinite-
medium theory.

For a more plausible comparison with exper-
iment, one can attempt to simulate the effect
of the finite size of the laboratory plasma'~'~'

by setting lower bounds on the components of
the wave vector k, and using the infinite-me-
dium theory. Thus we require ~zR -~ a
& m, where R and I. are the radius and length
of the plasma. For R = 15 cm the criterion for
instability becomes (~pe/&dc j)threshold ~ 2 for
N = 1. The length of the central-peak plasma

in DCX-2 is =100 cm, which is about 5 times
the minimum length required for a standing
wave at the fundamental frequency. The ex-
perimental value of &ape/&ucz is greater than

7, assuming the electron density equals the
total ion density. There is experimental evi-
dence that this value is a considerable under-
estimate.

This result shows that the finite size of the
plasma has a strong effect on threshold den-
sities; the corrections just discussed change
the predictions by a factor of 4. The apparent
stability at densities approximately an order
of magnitude greater than the amended predic-
tions may reflect either the approximate nature
of the simulation above or the influence of ad-
ditional effects of the finite size. In particular,
the instabilities discussed in the theory are
likely to be convective so that reflection, trans-
mission, or damping processes at boundaries
of the plasma may substantially alter the sta-
bility.
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