ERRATA

DYNAMIC POLARIZATION OF NUCLEI BY ELECTRON-NUCLEUS DIPOLAR COUPLING ("EFFET SOLIDE"). M. Borghini [Phys. Rev. Letters 16, 318 (1966)].

(i) "Eq. (4)" and "Formula (4)" should be replaced by "Eq. (3)" and "Formula (3)." (ii) P. 320, Sec. 3: A more accurate calculation of the parameter f using the crystal structure of LMN gives $f \cong 6 \times 10^5 H^{-2}$, i.e., with H = 18.5kG, $f \cong 18 \times 10^{-4}$. On the other hand, in the crystals which were grown for dynamic polarization, although the concentration of neodymium was 1% in the starting solution, its final value was about $0.2\%^{1,2}$ and the value for the parameter σ' is accordingly smaller, so that $f\sigma'$ lies between 0.1 and 0.3. With $P_0 = 0.93$, the solution of system II ranges between 0.75 and 0.86; with $P_0 = 0.83$, between 0.65 and 0.75. The other calculations are not affected by these changes.

¹H. Dost, in a private communication to C. Schultz, thesis, University of California, Berkeley, 1964 (unpublished).

²Mrs. H. Raynaud and Mrs. A. Cittanova, private communication, quoted in Ref. 14.

REGGE RECURRENCES AND $\pi^- p$ ELASTIC SCATTERING AT 180°. V. Barger and D. Cline

[Phys. Rev. Letters 16, 913 (1966)].

Under the section Interference of amplitudes, the third sentence should be changed to read, "For example, these authors suggest that the $I = \frac{1}{2}$, 2190-MeV resonance should have negative parity in agreement with the assignment in Table I."

The following acknowledgement was omitted in printing: "We are grateful to Professor C. Goebel for helpful comments on the manuscript."

 K_{l3} FORM FACTORS. V. S. Mathur, L. K. Pandit, and R. E. Marshak [Phys. Rev. Letters 16, 947 (1966)].

In Eq. (11), M_{κ}^{2} in the denominator should be replaced by $(M_{\kappa}^{2}-M_{K}^{2})$. If we further use the values of the parameters C_{π} and C_{K} evaluated directly from the π_{l2} and K_{l2} decay rates, rather than from baryon leptonic decays as quoted, we obtain for Eqs. (12), (13), and (14) the results

 $F_{+}(0) = -0.67, F_{-}(0) = +0.09, \xi = -0.13.$

The value of ξ changes sign for a κ width $\Gamma(\kappa) \approx 20$ MeV, becoming equal to 0.16 for $\Gamma(\kappa) = 30$ MeV and equal to 0.46 for $\Gamma(\kappa) = 50$ MeV.