MINIMAL CP NONCONSERVATION IN K^0 DECAY*

Theodore Bowen

Department of Physics, University of Arizona, Tucson, Arizona (Received 13 December 1965)

The discovery of the decay $K_L^0 \rightarrow \pi^+ + \pi^-$ by Christenson, Cronin, Fitch, and Turlay¹ has raised serious doubts concerning the conservation of *CP* and *T* in weak interactions. This question can be precisely restated in terms of the treatment by Lee, Oehme, and Yang² of the decay properties of the K^0 , which are obtained from the eigenvalues and eigenstates of the equation

$$(\Gamma + iM)\psi_{S, L} = \lambda_{S, L}\psi_{S, L}, \qquad (1)$$

where Γ and M are 2×2 matrices, and the two components of $\psi_{S,L}$ are the amplitudes of the K^0 and \overline{K}^0 components in ψ_S or ψ_L . With CPand T conservation, all the elements of Γ and M must be real and

$$\Gamma_{11} = \Gamma_{22}, \quad M_{11} = M_{22}, \tag{2}$$

$$\Gamma_{12} = \Gamma_{21}, \quad M_{12} = M_{21}. \tag{3}$$

The question is, "Does the $K_L^0 - \pi^+ + \pi^-$ decay require the introduction of imaginary components to Eq. (3) to describe correctly the time development of K^0 amplitudes given by Eq. (1), thus forcing the abandonment of *CP* and *T* conservation in the description of particle amplitudes?"

Attention is drawn to one rather unique possibility of minimal CP noninvariance in K^0 decay which would allow the retention of CP and T conservation conditions, Eq. (3), for the K^0 states, yet would be consistent with the known experimental results for $K_L^0 \rightarrow \pi^+ + \pi^-$. To appreciate its uniqueness, the following analysis is presented.

Applying the conditions of Eqs. (2) and (3) to Eq. (1), one finds that the eigenfunctions are the $CP=\pm 1$ eigenstates

$$\psi_{S} = (1/\sqrt{2})(K + \overline{K}) \equiv K_{1}, \quad \psi_{L} = (1/\sqrt{2})(K - \overline{K}) \equiv K_{2}.$$
 (4)

It is now convenient to study the function

$$Z = \sum_{n} a(K_L - n)a^*(K_S - n), \qquad (5)$$

which Coleman and Glashow³ have discussed, where the sum is over all possible decay modes, n, and the a's are the amplitudes of the respective decay modes, including density-of-states factors. From Eqs. (1), (2), (3), (4), and (5) it can be shown⁴ that

$$Z=0,$$
 (6)

and, conversely, that Eqs. (1), (2), (5), and (6) imply Eq. (3) is valid. Indicating explicitly the known decay modes of the K^0 , one obtains

$$Z = a(K_{2} \to \pi^{+} + \pi^{-})a^{*}(K_{1} \to \pi^{+} + \pi^{-})$$

+ $a(K_{2} \to \pi^{0} + \pi^{0})a^{*}(K_{1} \to \pi^{0} + \pi^{0})$
+ $a(K_{2} \to 3\pi)a^{*}(K_{1} \to 3\pi)$
+ $a(K_{2} \to \pi^{+} + l^{-} + \overline{\nu})a^{*}(K_{1} \to \pi^{+} + l^{-} + \overline{\nu})$
+ $a(K_{2} \to \pi^{-} + l^{+} + \nu)a^{*}(K_{1} \to \pi^{-} + l^{+} + \nu).$ (7)

This function is useful because the magnitude and approximate phase of the first term, $Z(\pi^+\pi^-)$, is known from experiment.^{1,5} The result is indicated in Fig. 1 as a vector from the origin to any point in the shaded region.⁶ In order to satisfy the requirements of *CP* and *T* invariance of Eq. (1), yet account for the experimen-

FIG. 1. $Z(\pi^+\pi^-) = a(K_L \to \pi^+ + \pi^-)a^*(K_S \to \pi^+ + \pi^-)$ must lie in or near the shaded region [arbitrarily placed in the first quadrant, corresponding to $M(K_2) > M(K_1)$] according to experiment. Z(?) represents the term in Z which is desired to cancel $Z(\pi^+\pi^-)$. Effects of unequal $\pi\pi$ phase shifts in the I=0 and I=2final states have been neglected.

tally observed *CP* nonconserving amplitude represented by $Z(\pi^+\pi^-)$ in Fig. 1, $Z(\pi^+\pi^-)$ must be cancelled by other terms in Eq. (7), whose sum is represented by Z(?) in Fig. 1.

The contribution of the last two terms in Eq. (7), $Z(\pi l \nu)$, can be rewritten:

$$Z(\pi l \nu)$$

$$= 2i \operatorname{Im} \left[a(K \to \pi^- + l^+ + \nu) a * (\overline{K} \to \pi^- + l^+ + \nu) \right].$$
(8)

The assumption that $K_S = K_1$ and $K_L = K_2$ and the conditions imposed on the decay amplitudes by *TCP* invariance require that all of the terms, such as $Z(\pi l \nu)$, in Z be pure imaginary in the absence of final-state interactions. If $Z(\pi l \nu)$ occurs with the direction and approximate magnitude shown for Z(?) in Fig. 1, one asks if it could cancel a purely imaginary $Z(\pi^+\pi^-)$ compatible with present experimental limits as indicated in the figure. If the $\Delta S = \Delta Q$ rule is exact, $Z(\pi l \nu) = 0$, failing to cancel $Z(\pi^+\pi^-)$. Even with maximal violation of the $\Delta S = \Delta Q$ rule and with the most favorable relative phases, as suggested by Sachs,⁷ it is found that⁸

$$|Z(\pi l\nu)| \leq |a(K \to \pi^- + l^+ + \nu)|^2 + |a(\overline{K} \to \pi^- + l^+ + \nu)|^2$$

$$\leq (1.09 \pm 0.15)(10^7) \text{ sec}^{-1}, \qquad (9)$$

whereas the magnitude of $Z(\pi^+\pi^-)$ is

$$|Z(\pi^+\pi^-)| = (1.45 \pm 0.2)(10^7) \text{ sec}^{-1}.$$
 (10)

Since recent experiments do not find evidence of a large $\Delta S = -\Delta Q$ amplitude,⁹ $Z(\pi l\nu)$ is an unlikely candidate to balance $Z(\pi^+\pi^-)$.

The 3π term in Z,

$$Z(3\pi) = a(K_2 - 3\pi)a * (K_1 - 3\pi), \qquad (11)$$

would be expected to have a much smaller magnitude than $Z(\pi^+\pi^-)$ since it is known that¹⁰

$$|a(K_1 - \pi^+ + \pi^- + \pi^0)| \leq 1.6 |a(K_2 - \pi^+ + \pi^- + \pi^0)|.$$
(12)

Even with the most favorable choice of isotopic spin, I=1, for $a(K_1 \rightarrow 3\pi)$ and of the phase between amplitudes,

$$|Z(3\pi)| \leq 1.6 |a(K_2 - 3\pi)|^2 = (1.1)(10^7) \text{ sec}^{-1}, (13)$$

so the $Z(3\pi)$ term is also an improbable source of a cancellation of the observed $Z(\pi^+\pi^-)$ term.

In the term due to the decay into two
$$\pi^{0}$$
's,

$$Z(\pi^{0}\pi^{0}) = a(K_{2} \to \pi^{0} + \pi^{0})a^{*}(K_{1} \to \pi^{0} + \pi^{0}), \qquad (14)$$

it is known from the dominance of the I=0 $\pi\pi$ state in K_1^0 decay that

$$a^{*}(K_{1} \rightarrow \pi^{0} + \pi^{0}) = (1/\sqrt{2})a^{*}(K_{1} \rightarrow \pi^{+} + \pi^{-}).$$
 (15)

If one assumes that the K_2^{0} also decays predominantly into the I = 0 $\pi\pi$ state, then Eq. (18) holds for the decay $K_2^{0} \rightarrow \pi^{0} + \pi^{0}$, as well, so

$$Z(\pi^{0}\pi^{0}) = \frac{1}{2}Z(\pi^{+}\pi^{-}).$$
(16)

Thus, if K_2^0 decays to an I=0 $\pi\pi$ state, $Z(\pi^0\pi^0)$ can only increase the magnitude of Z.

The last remaining possibility is to assume that the K_2^0 decays into an $I=2 \pi \pi$ state, in which case

$$a(K_2 \to \pi^0 + \pi^0) = -\sqrt{2}a(K_2 \to \pi^+ + \pi^-).$$
(17)

In this event, one finds

$$Z(\pi^{0}\pi^{0}) = -Z(\pi^{+}\pi^{-}), \qquad (18)$$

exactly achieving the desired cancellation. If $Z(3\pi)$ and $Z(\pi l\nu)$ are zero, then Eq. (6) is satisfied. Truong¹¹ has already discussed under more general conditions the possible origin of the decay $K_L^{0} \rightarrow \pi^+ + \pi^-$ in $\Delta I = \frac{3}{2}$ transitions which give rise to an I=2 $\pi\pi$ amplitude. However, the I=2 $\pi\pi$ amplitude required from K_L^{0} decay is about 1/26 of the I=2 $\pi\pi$ amplitude present in K^+ decay. This ratio might be more easily accounted for if both $\Delta I = \frac{3}{2}$ and $\Delta I = \frac{5}{2}$ transitions occur in K^+ decay.

It is seen that only the hypothesis of K_L^0 decay into an $I=2 \pi\pi$ state would allow a remarkable special case compatible with experiment where *CP* noninvariance of a decay mode does not destroy the *CP* invariance of the K_S^0 and K_L^0 eigenstates. Under these special conditions, one obtains

$$\frac{a(K_{L} - \pi^{+} + \pi^{-})}{a(K_{S} - \pi^{+} + \pi^{-})} = i \exp[i(\delta_{2} - \delta_{0})]\epsilon, \qquad (19)$$

$$\frac{a(K_L - \pi^0 + \pi^0)}{a(K_S - \pi^0 + \pi^0)} = -2i \, \exp[i(\delta_2 - \delta_0)]\epsilon, \qquad (20)$$

where ϵ is a real number and δ_0 and δ_2 are the $\pi\pi$ phase shifts in the I=0 and I=2 states, respectively, due to final-state interactions. A unique branching ratio,

$$\frac{|a(K_L \to \pi^0 + \pi^0)|^2}{|a(K_L \to \pi^+ + \pi^-)|^2} = 2,$$
 (21)

would be expected, since the K_L^0 would be forbidden to decay into an I=0 $\pi\pi$ state. Analogously, the K_1^0 and K_2^0 eigenstates would not be disturbed by a *CP*-nonconserving, I=3 3π

amplitude of appropriate phase in K_1^0 decay. Relations similar to Eqs. (19), (20), and (21) for 3π final states are

$$\frac{a(K_{S} \to \pi^{+} + \pi^{-} + \pi^{0})}{a(K_{L} \to \pi^{+} + \pi^{-} + \pi^{0})} = i \exp[i(\delta_{3} - \delta_{1})]\epsilon', \qquad (22)$$

$$\frac{a(K_{S} \to \pi^{0} + \pi^{0} + \pi^{0})}{a(K_{L} \to \pi^{0} + \pi^{0} + \pi^{0})} = \frac{2}{3}i \exp[i(\delta_{3} - \delta_{1})]\epsilon', \qquad (23)$$

$$\frac{|a(K_{S} - \pi^{0} + \pi^{0} + \pi^{0})|^{2}}{|a(K_{S} - \pi^{+} + \pi^{-} + \pi^{0})|^{2}} = \frac{2}{3},$$
 (24)

where ϵ' is a real number, and δ_1 and δ_3 are the corresponding phase shifts due to finalstate interactions.

Of the class of theories which might require $K_{I}^{0} \rightarrow \pi^{+} + \pi^{-}$ to be dominated by an I = 2 final state and which would maintain $K_S^0 = K_1^0$ and $K_L^0 = K_2^0$, a simple example is the following:¹² Let the strangeness-changing weak-interaction Hamiltonian be written as the sum of two parts,

$$H = H_{\Delta I} = \frac{1}{2}, CP = +1^{+H_{\Delta I} = \frac{5}{2}}, CP = -1,$$
 (25)

where the first term, assumed to be dominant, gives the decay $K_1^0 \rightarrow 2\pi$ with the familiar $\Delta I = \frac{1}{2}$ selection rule. The second, CP-nonconserving term gives rise only to I = 2 and I = 3 states in K decay and since CP is required to change, $K_2^0 \rightarrow (I=2)$ and $K_1^0 \rightarrow (I=3)$ are the only *CP*-nonconserving K^0 decay modes.

The author wishes to express his apprecia-

tion to Professor S. L. Glashow and Dr. R. H. Socolow for several helpful discussions and to acknowledge the hospitality of the Lawrence Radiation Laboratory where he was a visitor during much of the period in which this work took form.

*Work supported in part by National Science Foundation.

¹J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, Phys. Rev. Letters 13, 138 (1964).

²T. D. Lee, R. Oehme, and C. N. Yang, Phys. Rev. 106, 340 (1957).

³S. Coleman and S. L. Glashow, to be published. ⁴Using the notation of Ref. 2, $p^2 \equiv \Gamma_{12} + iM_{12} = q^2$ using Eq. (3). Expressing Z in terms of K and \overline{K} decay amplitudes, $Z = (|p|^2 - |q|^2)\Gamma_{11} + pq(\Gamma_{12}^* - \Gamma_{12}) = 0.$

⁵V. L. Fitch, R. F. Roth, J. S. Russ, and W. Vernon, Phys. Rev. Letters 15, 73 (1965).

⁶As the authors of Refs. 1 and 5 present their results differently, the error assignments in Fig. 1 are order-of-magnitude estimates by the author. $\delta = 0.8$ ± 0.2 is assumed for the $K_1^0 - K_2^0$ mass difference.

⁷R. G. Sachs, Phys. Rev. Letters <u>13</u>, 286 (1964). ⁸Based upon the decay times and branching ratios given in University of California Radiation Laboratory Report No. UCRL 8030 (unpublished), Pt. I, the follow-Interpret No. OCTL 3030 (inpublished), Pt. 1, the follow-ing decay rates are employed: $|a(K_1 \rightarrow 2\pi)|^2 = (1.10 \pm 0.02)(10^{10}) \sec^{-1}$, $|a(K_2 \rightarrow 3\pi)|^2 = (0.67 \pm 0.09)(10^7) \sec^{-1}$, $|a(K_1 \rightarrow \pi + l + \nu)|^2 \cong |a(K_2 \rightarrow \pi + l + \nu)|^2 = |a(K \rightarrow \pi^- + l^+ + \nu)|^2$ $+ |a(\overline{K} \rightarrow \pi^- + l^+ + \nu)|^2 = (1.09 \pm 0.15)(10^7) \sec^{-1}$, $|a(K^+ \rightarrow \pi^+ + \pi^0)|^2 = (1.75 \pm 0.04)(10^7) \sec^{-1}$. ⁹L. Kirsch et al., Phys. Rev. Letters <u>13</u>, 35 (1964); B. Aubert et al. Phys. Letters <u>17</u>, 50 (1965).

B. Aubert et al., Phys. Letters 17, 59 (1965).

¹⁰J. A. Anderson et al., Phys. Rev. Letters <u>14</u>, 475 (1965); 15, 645 (1965).

¹¹T. N. Truong, Phys. Rev. Letters <u>13</u>, 358a (1964). ¹²The author thanks Professor S. L. Glashow for suggesting this example.

SU(6) RESULTS DERIVED FROM CHIRAL SU(3) \otimes SU(3) ALGEBRA*

Ira S. Gerstein

Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania (Received 20 October 1965)

A suggestion by Gell-Mann¹ that the algebra generated by current components may be useful in understanding the systematics of the hadrons even though the Hamiltonian may not be invariant has been fruitfully pursued recently. Lee^2 and Dashen and Gell-Mann³ used the SU(6) algebra generated by the time component of the vector current and the space components of the axial-vector currents and, by assuming

that the matrix elements of the commutator algebra between zero-momentum octet baryons are saturated by intermediate octet and decuplet states, derived many of the results previously obtained from SU(6) invariance. Adler⁴ and Weisberger.⁵ on the other hand, used the chiral $SU(3) \otimes SU(3)$ algebra generated by the time components of the vector and axial-vector currents to calculate the renormalization of the axial-