consider a case where *n* clusters are m = 1 and the other $(n_c - n)$ clusters of $m \ge 2$ have $(n_s - n)$ spins as a whole. Then the number of independent states $w(n_c,$ n_s, n) is represented as $w = n_c C_n \times n_c - n H_{n_s} - n_c$. Accordingly, the mean value of n, i.e., n_e , is given by

$$n_e = \sum_n nw/W = \sum_{n=1}^{nc-1} n \times n_c^C n \times n_c - n^H n_s - n_c^C.$$

Using a formula of combination products,

$$\sum_{r=0}^{q} \alpha^{C}_{q-r} \times_{\beta}^{C}_{r} = \alpha + \beta^{C}_{q} \quad (\alpha \ge q, \beta \ge q),$$

 $\begin{array}{l} n_e \ \text{reduces to} \ n_e = n_c (n_c - 1)/(n_s - 1) \simeq n_c^{2}/n_s \ \text{when} \ n_c \gg 1, \\ n_s \gg 1. \ \text{Similarly, the number of clusters having} \ m = \lambda \\ \text{is obtained as} \ n_c^{2}/n_s (1 - n_c/n_s)^{\lambda - 1}. \end{array}$

⁷M. Date and M. Motokawa, Phys. Rev. Letters <u>15</u>, 854 (1965).

SYSTEMATICS OF LOW-LYING 0⁺ STATES IN LIGHT NUCLEI*

W. E. Meyerhof

Department of Physics, Stanford University, Stanford, California (Received 12 May 1966)

Recently it has been suggested¹ that the 20.3-MeV 0^+ state of He⁴ might be described by a "breathing mode." The present note calls attention to certain systematics² of 0^+ excited states in light even-even nuclei, particularly closed-shell nuclei, which show that a breathing-mode³ description of these states is probably not successful. A more fruitful description in terms of multipair excitations, a pair consisting of a particle and a hole, is indicated.

Table I lists the 0^+ states considered here. Column 2 gives⁴ excitation energies E. Column 3 presents a first systematic trend: The energies of these states follow roughly a $1/R^2$ dependence, where R is the nuclear radius. For a breathing mode one expects a 1/R energy dependence.⁵ The argument can of course

Table I. $0^+ - 0^+$ transitions in light nuclei. The energy of the transition is denoted by E, the pair width by Γ_{π} . The quantities ρ and f are the normalized monopole transition element and fraction of a monopole sum rule exhausted by the transition. Exact definitions are given in the text.

	E (MeV)	$EA^{2/3}$	Γ_{π} (eV)	ρ^{e}	f (%)
He^4	20.3	51	$(3.4 \pm 0.9) \times 10^{-4} a$	0.23	11
C^{12}	7.66	40	$(6.2 \pm 0.6) \times 10^{-5} b$	0.52	16
O^{16}	6.05	38	$(9.2 \pm 0.9) \times 10^{-6}$ c	0.31	4.0
Ca ⁴⁰	3.35	39	$(1.9 \pm 0.1) \times 10^{-7}$ d	0.12	0.25
Zr^{90}	1.75	35	$(2.2 \pm 0.2) \times 10^{-9} d$	0.048	•••

The percentage uncertainty in ρ is approximately one-half of that in Γ_{π} .

be made¹ that the He⁴ state represents a breathing mode and that in the other nuclei the corresponding state, lying roughly at 20.3 $(4/A)^{1/3}$ MeV, has not yet been discovered.

Column 4 in Table I lists the internal pair widths Γ_{π} of the states, taken from various references.^{4,6-8} A second systematic trend can be noted by extracting from Γ_{π} the normalized transition matrix element $\rho = \langle r^2 \rangle_{if} / R^2$, where $\langle r^2 \rangle_{if}$ is the monopole matrix element between the initial state i and the final state fand R is the nuclear radius. As has been customary⁹ we have put $R = (\frac{1}{2}e^2/mc^2)A^{1/3} = 1.41A^{1/3}$ F. Using interpolations of calculations by Zirianova and Krutov,¹⁰ the values for ρ in column 5 of Table I are found. One notes that the normalized transition matrix element for He⁴ is comparable to that for C^{12} , O^{16} , and Ca^{40} . A similar conclusion can be drawn by substituting the experimental monopole matrix element into Ferrell's sum rule¹¹ for T = 0 to T = 0 monopole transitions:

$$N = \sum_{f} 2mE |\langle r^2 \rangle_{if}|^2 / \langle \hbar^2 \langle r^2 \rangle), \qquad (1)$$

where N = number of nucleons, m = mass of nucleon, $\langle r^2 \rangle$ = mean square radius of ground state. One then finds that each of the 0^+-0^+ transitions considered here exhausts only a fraction f of the sum rule, shown in column 6 of Table I. The fraction f is defined as the ratio of the right-hand side of Eq. (1) to the left-hand side.] It can be seen that the He⁴ transition does not exhaust a greater portion of the sum rule than the C^{12} transition, and neither exhausts the full sum rule. Since the model discussed in Ref. 1 does exhaust¹ the full sum rule (1), it does not appear that the He⁴ state is well de-

^aRef. 6. ^bRef. 7.

Ref. 8.

Ref. 4.

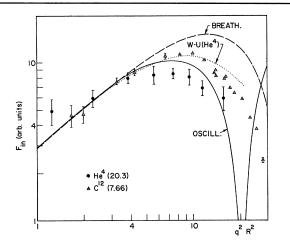


FIG. 1. Shapes of form factors for inelastic electron scattering to 0^+ excited states of He⁴ and C¹², vs q^2R^2 where q is the momentum transfer and R is the nuclear radius. The value of R has been taken as the equivalent uniform radius of Ref. 12. Solid points, for the 20.3-MeV state of He⁴, are taken from Ref. 6. Triangle points, for the 7.66-MeV state of C¹², are taken from Ref. 7. The solid ("OSCILL.") and dashed ("BREATH.") lines represent results of the oscillating and the breathing liquid-drop models of Ref. 5. The dotted line ["W-U(He⁴)"] gives the prediction for He⁴ of the breathing mode model of Ref. 1. Experimental and theoretical form factors have been arbitrarily normalized at low q^2 values.

scribed by this model.

One can also investigate the nature of the 0^+-0^+ transitions by studying the shape of the inelastic electron scattering form factor⁷ $F_{in}(q^2)$ as a function of the square of the momentum transfer q^2 . Figure 1 compares the shapes of F_{in} for⁶ the He⁴ and⁷ the C¹² transitions with those calculated by Walecka⁵ for an oscillating or breathing guantized liquid drop of radius $R.^{12}$ Also shown is the prediction of Ref. 1 for the He⁴ transition.¹³ All the form factors have been normalized arbitrarily at low q^2 values, where, independently of the model, they are expected¹⁴ to be proportional to q^2 . One sees that neither the He^4 nor the C^{12} form factors follow the shapes predicted by the models of Refs. 1 and 5.

Szydlik¹⁵ has recently computed the energies of the lowest states of He⁴ on a one- and twopair model. He finds a 0⁺ state close to 20 MeV. Similar success for O¹⁶ has been obtained¹⁶ by including four-pair excitations. The systematics presented here should encourage further computations along these lines, in particular for F_{in} . In this connection one must take into account the fact that the 0⁺ state of He⁴ is unbound.¹⁷

The author is most grateful to Professor Werntz and Professor Überall, and to Dr. Crannell, Dr. Frosch, and Dr. Szydlik for communicating results of their work prior to publication. Discussions with Professor Walecka and Professor Griffy are gratefully acknowledged.

*Work supported in part by the National Science Foundation.

¹H. Überall and Carl Werntz, Bull. Am. Phys. Soc. <u>11</u>, 322 (1966), and to be published.

²W. E. Meyerhof, Bull. Am. Phys. Soc. <u>10</u>, 698 (1965).

³L. I. Schiff, Phys. Rev. <u>98</u>, 1281 (1955).

⁴<u>Nuclear Data Sheets</u>, compiled by K. Way <u>et al</u>. (Printing and Publishing Office, National Academy of Sciences-National Research Council, Washington, D. C.).

⁵J. D. Walecka, Phys. Rev. <u>126</u>, 653 (1962).

⁶R. Frosch, R. E. Rand, M. R. Yearian, H. L. Crannell, and L. R. Suelzle, Phys. Letters <u>19</u>, 155 (1965); and R. Frosch, private communication.

⁷H. L. Crannell and T. A. Griffy, Phys. Rev. <u>136</u>, B1580 (1964); and H. L. Crannell, private communication.

⁸F. Ajzenberg-Selove and T. Lauritsen, Nucl. Phys. <u>11</u>, 1 (1959).

⁹S. Drell and M. E. Rose, Progr. Theoret. Phys. (Kyoto) <u>7</u>, 125 (1952).

¹⁰L. N. Zirianova and V. A. Krutov, Izv. Akad. Nauk SSSR <u>20</u>, 312 (1956) [translation: Bull. Acad. Sci.

USSR, Phys. Ser. <u>20</u>, 288 (1956)].

¹¹R. A. Ferrell, Phys. Rev. <u>107</u>, 1631 (1957).

 12 The value of *R* has been taken as the equivalent uniform radius. R. Hofstadter, Rev. Mod. Phys. <u>28</u>, 214 (1956).

¹³According to the breathing mode model of Ref. 1, $F_{in} \propto q dF_{el}/dq$, where F_{el} is the elastic-scattering form factor.

¹⁴L. I. Schiff, Phys. Rev. 96, 765 (1954).

¹⁵P. Szydlik, private communication.

¹⁶W. H. Bassichis and G. Ripka, Phys. Letters <u>15</u>, 320 (1965); G. E. Brown and A. M. Green, Nucl. Phys. <u>75</u>, 401 (1966); Louis S. Celenza and R. Dreizler, Bull. Am. Phys. Soc. <u>11</u>, 322 (1966).

¹⁷Carl Werntz, Phys. Rev. <u>128</u>, 1336 (1962), and <u>133</u>, B19 (1964); W. E. Meyerhof and J. N. McElearney,

Nucl. Phys. <u>74</u>, 533 (1965). For other references see P. E. Argan, G. C. Mantovani, P. Marazzini, A. Piazzoli, and D. Scannicchio, Nuovo Cimento Suppl. <u>3</u>, 245 (1965).