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Recent experimental evidence' suggests
that the behavior of He and He at their crit-
ical points deviates qualitatively from that ob-
served with "classical" gases for which the
de Boer parameter A*=h/(mrna')'" is small.
(m, e, and v measure the mass, potential well
depth, and collision diameter, respectively. )

In particular, while the coexistence curves
of Xe and CO, may be described accurately
over a wide range of T approaching Tc by

It(T) =(p. p)/-2p =Du-(T/T ) jliq gas c c

while the coupling constant is

g= (A+/2m)' = (x+)'.

For a classical gas (g= 0), the analogy with

a spin- —,
' Ising ferromagnet via the lattice-gas

model is well known'~' and may be expressed
by

~ -=J, y(0) =+~, y(r) -=-J(r),It

eKo+ pN—= X ,. , p/p =—1-(M/M ),Ising' c sat '

and p, -p. =—28,c

(3)

x =e(x +gx ), (2)

where Xo is the reduced potential energy and

X, the reduced kinetic energy ——,'Q~B'/Bx~',

with P lying in the range 0.33 to 0.36, ' the
apparent value of P (e.g. , on a log-log plot)
for He3 and He~ seems to increase to values
in the range 0.40-0.50 when T/Tc & 0.98.'~'

Similar changes towards "Van der Waals-like"
behavior appear to take place also in the oth-
er critical-point exponents (y and y' for the
compressibility above and below Tc, etc.).'~'&'

Sherman and Hammel7 have discussed these
effects from the viewpoint of de Boer's theory
of corresponding states. They implicitly sug-
gested that the exponents P(A*), y(A*), etc. ,
are continuous smoothly varying functions of
A*. The purpose of this note is to argue, on
the contrary, that the ideal critical-point ex-
ponents defined'~ in the limit T- Tc are prob-
ably discontinuous functions of A* with, for
example, P=P, for A*=0, P=P, for 0&A*&A*„
and, possibly, P = P, for A*& A*, . The impli-
cations of this conclusion for the shapes of
coexistence curves, etc., will be discussed.

For pair interactions of the form y(r) = of(r/o),
where f(x) is a "universal" shape factor, the
Hamiltonian of an N-body system may be writ-
ten

x, =x =p.(s. s. +s.~s.y), (4)

where the sum runs over nearest-neighbor
pairs, and the coupling constant is

g= J /J -=(2do /qa')(~~)', (5)

where d is the dimensionality, q the coordin-
ation number, and a the lattice spacing. In
the simplest ferromagnetic nearest-neighbor
model, "J(r) vanishes for r &a, and one may
take o =a so that the prefactor in (5) lies be-
tween —,

' and 1 for most lattices. The pure iso-
tropic Heisenberg model then corresponds to
g = 1 or X *= X~

*= 1-W2.
Numerical evidence for the simple d =3 Is-

ing model" shows that P(0) =0.31 = 5/16 and

y(0) =1.25 = 5/4, whereas for the Heisenberg
model Tz(1) & Tz(0) and y(g= 1) = 1.33 = ~~ is in-
dicated. " These changes are actually away

p, being the chemical potential and H the reduced
magnetic field. As noticed by a number of au-
thors, ' ' there is a corresponding analogy
between a quantum-mechanical Bose lattice
gas and an anisotropic Heisenberg-Ising mag-
net. The reduced kinetic energy becomes the
transverse interaction
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from Van der Waals-like behavior (y =1). On
the other hand, the critical ratio pcvc/kTc in-
creases, from 0.258 to 0.262 for the fcc lat-
tice,"which is in the direction found experi-
mentally (0.290 for Xe to 0.305 for He'). Fur-
ther mor e, the value of y for inter mediate g
or A* has not yet been estimated and it is not
certain that it need lie between 5/4 and —,'.
(It has been conjectured that i3(1) = 0.33 but this
has not been tested numerically close to Tz.)

If the anisotropic magnetic Ha, miltonian is
treated by the method of truncated Green func-
tions, 's one finds2o (A) y(g) = 0 for 0 ~g&1 but

y(l) = 2. This result cannot, of course, be trust-
ed quantitatively, but there is further theor-
etical evidence which suggests that the isotrop-
ic Heisenberg model represents a singular lim-
it where analytic behavior changes discontin-
uouously. " Possibly, therefore, A*=A, *=2n-
2' 'w might similarly be a "transition" value
for the fluid problem in the Bose case. It seems
unlikely, however, that this is attained in the
real world, since A*(He ) = 2.67 [while A*(He')
= 3.06].

In further support for the discontinuity of
the exponents P(g), y(g), etc. , we describe
three "soluble" problems where the Hamilton-
ian is split in analogy to (3). Consider the spher-
ical model for d = 3 with a,n intera. ction poten-
tial

would become linear for smaller t.
Similar "nonuniformity" must occur in the

coexistence curves and plots of compressibil-
ities in the examples (A), (B), and (C)." A

simple formula for the coexistence curve with
this property" is

R(T)=(p -p )/2p =D(x*)t '[t+b(x. *)'] ' ', (7)P~ 2 P, P, -
L 6 c

where t =1-[T/Tc(X*)]. The power of X* in
the last factor is suggested by dimensional
considerations [kT, kTc, e, and k'mo =(X*)'e
being the fundamental energies]. First-order
perturbation theory would be expected to yield
T (g*) = T (0)[1-e(X*)] and D(X*)=D(0)[l-d(g*)2]
and hence suggests the linearity in t of the last
factor. [Other powers could, however, be ac-
commodated by changing this factor to t"+b(X*)n
and its exponent to (Po-P, )n although at present
there seems no justification or this. ]

If (7) is valid, a plot of R ~o vs T should
be linear for t» b('L")' with slope D /~o and
with an intercept extrapolated linearly to R
=0 falling short of the true critical tempera-
ture (if i3, & P,) by a shift

5T/T =b[(P,/P, )-1](X*)2.

This behavior may be seen in Fig. 1 where the

@(&)= & [f(&/o) +g(o/&) ] (5)

where f(x) is of finite range and 2 & &&2. One
finds2' (B) y(g = 0) = 2 but y(g) = f/(3-&) & 2 for
g) 0.

Secondly, consider the two-dimensional Is-
ing model with, in addition to normal nearest-
neighbor interactions, a "Kac potential" cgz'
xe p[x-~(r/o)) in which the limit ~-0 is tak-
en after the thermodynamic limit. "~'~ For this
model it follows'~ that (C) P(0) = ~s, y(0) = 7/4
but I3(g) = 2, y(g) = 1 for g& 0. A simila. r result
would hold when d =3.

Finally, as a very simple illustrative exam-
ple, consider the matrix "Hamiltonian" A(t)
+gB(t) when

0.4

0.3

0.2

1 0 ~ 0 t
0 1+t2, ' t 0,' (6) 0.85 0.95 (0

For small t, the energy gap b, (t) =E,—Eo be-
haves as it ib with (D) 5(g=0) =2 but 6(g) =1
for g& 0. From the exact result, A(t) = it l(t'
+-,'g )"', one sees that a plot of A(t) for small
g would appear quadratic down to t = O(2g) but

FIG. 1. Plots of R3= [(pf -p~)/2pzj vs T/T &from
Eqs. (7) and (S) with P0=3, P~=2, and b=0.12 for
(a) He, (b) He, {c)parahydrogen, and (d) the classi-
cal limit A* = 0 which is approximated by xenon. The
data points are from Refs. 1, 27, and 26, respectively.
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relation (7) is tested against the data for He',
He, and parahydrogen. " For simplicity we
have assumed that )3o = ~3 and (3, = —,'. The va.lues
b =0.12 (5T/Tc =0.011.) and D = 1.373 then pro-
vide an excellent fit to the data for He ." For
H, and He' the same value of b was taken to-
gether with

D(X*) = 1.71[1-1.09(g*)2j. (9)

This relation yields the quoted value for He'
and is also consistent with data for Ne (D =1.69,
A*=0.595) and Xe s The fits for H, and He'
are not quite a,s good a.s for He; this may be
due to defects of (7), to a breakdown of a cor-
responding-states representation, to Hes be-
ing a Fermi fluid, "or to the experimental dif-
ficulties of obtaining the coexistence curve pre-
cisely from PV T measurements. ~so [Of course
deviations from (7) must be expected at tem-
peratures sufficiently far removed from Tc.]

The fractional shifts bT/Tc predicted by (8)
for other gases are

Xe Ar Ne D2 HD

6x10 6 6x10 5x10 2x10 3 3x10

P U //PT =2,875y0.275(g+)
C C C

C(X*)= 0.80(1-2.05)(*),

where C = (Ap/pc)/(hT/Tc) is the reduced mean

slope of the rectilinear diameter of the coex-
istence curve taken over the range 0.75 To to
Tc
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