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susceptibility of a random dilute ferroelectric
system. Because of the generalized nature of
the treatment, it is expected that the same the-
ory should describe the paramagnetic suscep-
tibility of a random dilute paramagnetic sys-
tem” such as La3_,Gd,In (for sufficiently small
values of x). The underlying basis of the the-
ory is that the spin correlation between wide-
ly separated spin impurities (or the correla-
tion between widely separated electric dipoles
in the ferroelectric case) is broken up by ran-
domly positioned impurities between them.
There are small strongly correlated clusters
of spins which are only weakly coupled to other
clusters. Klein* has considered in detail only
the case where the forces between the impuri-
ties are limited to dipole-dipole interactions,
for which he obtains a temperature maximum
in the susceptibility and the prediction that Ty
is proportional to the concentration of impuri-
ties, but that the height of the peak is indepen-
dent of the concentration and the susceptibility
is smaller than the free-ion susceptibility at
all temperatures.

It is conceivable that the strong concentra-
tion dependence of Ty, and the gigantic mag-

netic susceptibilities of the Lag_,Gd,In sys-
tem can be brought into agreement with the
Marshall-Brout-Klein theory if strong short-
range ferromagnetic forces are included in the
theory. On the other hand, it may be that the
theory is inapplicable to systems with impu-
rity concentrations as high as those reported
here.

It is a pleasure to thank M. W. Klein for stim-
ulating discussions.
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It is commonly believed that spin-echo tech-
niques! succeed in recovering transverse spin
magnetization y#(I,) only to the extent that it
has been lost through inhomogeneous broaden-
ing. We were, therefore, surprised to observe
long trains of echoes in a number of homoge-
neously broadened solids when pulse sequences
timed according to the Carr-Purcell prescrip-
tion? were applied. (An initial 90° pulse is fol-
lowed after a time 7 by a train of pulses of
repetition period 27.) An example is shown
in Fig. 1. The experiments were all performed
near room temperature with a pulse spectrom-
eter which provided a rotating field H, =50 Oe
at 30 MHz and recovered from pulse overloads
in ~5 usec.

The behavior of this effect can be described
as follows: (1) The phase of the rf carrier
in the first pulse must differ by ~90° from that
during the rest of the experiment.® (2) The
effect occurs only when 7<7T,. The echo en-

FIG. 1. Train of !*F echoes in powdered Co(NHg)g-
(BF,);. Sweep speed: 1 msec/cm. 7 =10pusec. For
this substance Ty~ 45 psec.
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velope then decays exponentially (after an ini-
tial transient) with a time constant 7,1 which
becomes longer as 7/7, is reduced. (3) The
effect is maximized when all the pulses are
90° pulses, but for small 7/7T, this requirement
becomes less strict. (4) A plot of T,T vs 7ex-
trapolates for 7 -0 to Ty 0’ the longitudinal
relaxation time in the rotating frame.* (5) The
number of echoes obtainable can be very large.
In K,SiF, (**F resonance) we observe T,T=0.12
sec and 7=10 usec, corresponding to a decay
of less than 0.029% per echo.

We believe that this phenomenon can be un-
derstood from either of two points of view:

(1) For the first few echoes it is convenient
to calculate explicitly the development of the
density matrix, treating the (90°) pulses as
pure rotations and computing the development
between pulses by perturbation theory. This
procedure is an extension of that used by Powles
and Strange,® who have observed and explained
single 90°-90° echoes in solids. They find at
the first echo maximum that the leading term
in {I,)1=(y)q is of order 7*. Quantitative es-
timates for our experimental conditions sug-
gest on this basis a loss of 5-10% per echo.
We have carried the calculation to the second
echo maximum and find that the fourth-order
decrement is recovered, and that (I,)9—{I,)0
is of order 7. We do not know whether a fur-
ther cancellation occurs on the fourth echo,
but it is clear that a multiple-pulse experi-
ment preserves (I,) far longer than would be
guessed by extending the results of Powles
and Strange through a Stosszahlansatz.

(2) In the quasisteady state after the first
few pulses, the pulse train can be regarded
as a carrier of amplitude Hy =H1(t,,/27), where
t,, is the pulse width, together with a set of
sidebands spaced in angular frequency by 7/7 .
An examination of the effective spin Hamilto-
nian shows that as 7/7, becomes small, the
sidebands are nonsecular and can be ignored.
One then has the conditions for “spin locking™®
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in the field H,. (I,) decays in a time T1p. The
decay is no longer critically dependent on ,,.

The possibility of “continuous” observation
of (I) during spin locking appears potential-
ly valuable in the detection of double resonance
in the rotating frame,” in that the resonance
condition for the secondary spins can, in prin-
ciple, be detected (if the relevant cross-re-
laxation time is sufficiently short) without pro-
ducing a new spin lock for each trial. The case
of intermediate 7/7, is also intrinsically in-
teresting as a means for the detailed study
of spin interactions. Related phenomena are
expected in liquids as well as solids: One must
be clearly aware that multiple-pulse experi-
ments are qualitatively different from one-
and two-pulse experiments, and each requires
a detailed consideration of the relevant spin
Hamiltonian.

A detailed account and analysis of these ex-
periments and others in progress will be pub-
lished elsewhere.

We thank Professor E. L. Hahn for his com-
ments.
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FIG. 1. Train of *F echoes in powdered Co(NH;);-
(BFy)3. Sweep speed: 1msec/cm. 7= 10pusec. For
this substance T, = 45 psec.



