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Schiff and Barnhill' have shown that the elec-
tric field inside of a conductor does not vanish
when a gravitational field is present. This
phenomenon, which is of importance in connec-
tion with proposals to determine whether elec-
trically shielded positrons will fall up or fall
down, does not depend on the presence of a
nonvanishing Riemann tensor but holds already
for uniform gravitational fields, i.e. , acceler-
ation fields: If the acceleration of the conduc-
tor is -g then the quantity which vanishes in
its interior, and indeed inside any comoving
Faraday cage, is not the electric vector E but
rather the sum E+ (m/e)g, where m and e are
the mass and charge of the charge carriers. '
Since the electron is the universal carrier for
almost any conceivable electrical cage, this
means that a shielded electron will simply float
and, if the equivalence principle is valid, a
shielded positron will fall twice as fast as a
neutr al particle.

It is the purpose of this note to point out that
a similar phenomenon holds for magnetic fields

inside of superconductors. Whenever matter
is in motion near a superconductor, so that
a Lense-Thirring field' is present, the Meiss-
ner effect re'quires the vanishing not of the

magnetic vector H but of a linear combination
of H and the Lense-Thirring field. Moreover,
it is the flux of the latter combination, through
any superconducting ring, which gets quantized
in units of h/2e rather tha, n the magnetic field
alone.

To discuss the quantum properties of a su-
perconductor in a gravitational field we first
compute the Hamiltonian H of a single electron.
This can be obtained from the Lagrangian

~ p, vl/2L=-m( —g x x ) +eA x
p.v

where e and rn are the charge and mass of the
electron, g» is the metric tensor, A& is the
electromagnetic vector potential, and dots de-
note differentiation with respect to the time
x . One finds
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where g~ is the inverse metric and p is the
canonical momentum. In the limit of small
velocities and weak fields this reduces, after
removal of the rest mass, to

H = (1/2m) (p —B)'+ V,

where

!
of the nth electron and Vint includes the elec-
tron-phonon interaction and the phonon ener-
gy. All of the apparatus of the BCS theory'
may be applied to this Hamiltonian, with the
result that the Meissner effect implies the van-
ishing of the vector

1V = -eAO QPlkpop (4) G=VxB=eH+mV&h, (8)

B = eA+ mh, h, = (ho„ho2,ho~),

=g —g, q =rf =diag( —1 1 1 1). (6)
p, v
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For the Hamiltonian of the ensemble of free
electrons inside a superconductor, (8) is re-
placed by

H =5~/(1 /2m)[p -B(x )]'+ V(x ) )+ V.
n n n int'

where xn and pn are the canonical variables

inside the superconductor. Moreover, taking
into account the Cooper pairs as in the conven-
tional derivation, one easily finds that the to-
tal flux of G linking a superconducting circuit
must be quantized in units of zIl. Since a su-
perconductor is a conductor one also sees that
the Schiff-Barnhill field,

F =-VV=eE+-,mVA„,

must vanish inside.
Now consider an experiment in which the su-
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perconductor is a uniform circular ring sur-
rounding a concentric, axially symmetric, qua-
sirigid mass. Suppose the mass, initially
at rest, is set in motion until a constant final
angular velocity is reached. This produces
a Lense-Thirring field which, in a coordinate
system for which the metric is time indepen-
dent, takes the form

V&&h =167TKV 'Vx(pV), (10)

where v is the gravitation constant and p and
V are, respectively, the mass density and ve-
locity field of the rotating mass. If H is initial-
ly zero then so is G. Because of the flux quan-
tization condition the flux of G through the su-
perconducting ring must remain zero. But
since V & h is nonvanishing in the final state,
a magnetic field must be induced. Suppose the
rotating mass is kept electromagnetically neu-
tral (which means compensating for any Schiff-
Barnhill polarization which may be induced
in it). Then the magnetic field must arise from
a current induced in the ring. The magnitude
of this current will be

where S is the area spanned by the ring, I- is
its self-inductance, and the final integral is
taken around the ring. Assuming the dimen-
sions of the ring to be little larger than those
of the rotating mass, we obtain the order-of-

m 16m amI = — V x h ~ dS = — g(V 'pV). dr, (11)eI. eI-

magnitude estimate

I- vmM Vjed, (12)
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where V is the rim velocity of the rotating mass,
M is its mass, and d is its diameter.

The current I arises from an induced motion
of electrons on the surface of the superconduc-
tor. This motion is in the same direction as
the motion of the rotating mass, and represents
another instance of the well-known drag effect
produced by the Lense- Thirring field. It could,
in principle, be detected by leading the super-
conducting current into a region where the Lense-
Thirring field is negligible and measuring its
magnetic effect. '
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Various experimental techniques have been
applied to the problem of localized magnetic
moments in dilute alloys, but paramagnetic
resonance measurements have previously been
restricted to so1id-solution alloys or interme-
tallic compounds containing Mn, ' ' Gd, ' ' or
divalent Eu, ' where ag value close to 2.0 seems
to indicate S character for the presumably half-
filled Bd or 4f shell. ' We have now observed
the paramagnetic resonance due to erbium in
dilute solution in silver, the effective g value
being very close to that observed'~" for triva-
lent Er in cubic environments in nonmetallic

matrices, where the 'I»„state is split by the
crystal field to give a ground-state doublet.

The resonance measurements were made
at X band (8950 Mc/sec) with a high-frequen-
cy-modulation reflection spectrometer, in
which the large thermal capacity of the epoxy
casing around the cavity and an efficient auto-
matic frequency control made possible mea-
surements at intermediate temperatures while
the cavity slowly warmed up from 4.2'K. The
specimens were filed powders prepared from
an arc melte-d silver-0. 3 at. '%%uo erbium ingot
which had been given a homogenizing anneal.


