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the effects of volume expansion. ' Remember
that the absolute value of the resistivity is not
well predicted by pseudopotential models.

As another test of the approximations lead-
ing to (1) we would mention the temperature
coefficient of the Knight shift in liquid Na.
One of us (M.T.)7 showed that the appropriate
formula, similar to (1), could give reasonable
agreement with experiment provided again one
was careful to distinguish constant-pressure
and constant-volume results.

' We would like to thank Dr. A. J. Greenfield
and Dr. N. Wiser for some useful correspon-
dence and Dr. Wiser for sending us a copy of
his paper prior to publication.
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Recently, a new melting law for high pres-
sures has been proposed by Kennedy. ' In terms
of the relative compression &DV/V, of the solid
at normal temperature at a pressure I', the
purely empirical result can be expressed as

T =T (1+Cd V/V ),0

where TJI/I is the absolute temperature at fu-
sion under the melting pressure I'I —-& and

Tp is the corresponding normal value. The
purpose of this communication is to use the
Lindemann law as reformulated by Gilvarry, ~3

which was applied by Gilvarry to fusion at
extremely high pressures, to derive Eq. (1)
and to point out the connection of the result
with the Gruneisen' theory of the normal prop-
erties of solids. Further, it will be shown
that Eq. (1) is equivalent in the special case
of a restricted range of melting temperatures
to a relation given previously by Gilvarry, '
in which the constant C appears in terms of
the Gruneisen parameter of the solid at the
normal fusion point.

For a polyatomic solid having n atoms in
the stoichiometric compound, the Lindemann
law for the melting temperature TM in the
case of classical excitation of the lattice vi-
brations can be written from I and II as

nRT = AK V

where K~ and V~ are the bulk modulus and
molecular volume, respectively, of the sol-
id at fusion, R is the gas constant, and ~ is
an approximate constant defined in I. Select-
ing the volume V and absolute temperature
T as independent variables, one can express
the variable value KM of the bulk modulus K
in terms of its value Kp at the initial point
(Vo, To) chosen on the fusion curve by
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The path of integration in the V, T plane con-
sists of the horizontal line segment from V = V,
to V= V~ at the constant temperature T0, fol-
lowed by the vertical line segment from T =Tp
to T =T~ at the constant volume ~~, as im-
plied by subscripts on partial derivatives and

by limits of integration. Using the mean-val-
ue theorem to replace integrands by averages,
one obtains
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from Eq. (2) as an exact consequence of Linde-
mann's law. Equation (4) yields Eq. (1) direct-
ly, with the constant C given by

V
C=-

K
v

T (BK
X

~mi

(5)

when terms of order (V0—VM )' and (V0 —VM)
&& (T~-T0) are ignored. Neglect of these remain-
der terms implies that C can be only an approxi-
mate constant when fitted by Eq. (1) to experi-
mental data, in general, as follows also from
the weak dependence necessarily exhibited by
the mean values of partial derivatives in Eq. (5)
on the ranges of the variables over which they
are averaged.

To reduce Eq. (5) to more tractable form,
consider the Gruneisen parameter y of the sol-
id as written in I, y= —2(& lnK/&InV)T-~. Equa-
tion (5) yields

Note that the mean values of dependent vari-
ables entering Eqs. (5) and (6) do not represent
averages along the fusion curve itself, as tak-
en in III to derive the Simon equation PM=A[(TM/
T0) —1] from the Lindemann law and Griineisen
theory. For T~ sufficiently close to TO, how-

ever, averages as taken here and correspond-
ing averages along the fusion curve can both
be replaced by values at the initial point (V„
T,), approximately, and the value y, of the
Gruneisen parameter at this point can be used
as an approximation to yav, 0 of Eq. (7) and

to yav of III. In this limit, C of Eq. (6) reduces
to the value

C = 2(yo —
—,'),

and the law of corresponding states given in
III states that

(10)

which a binomial expansion shows to agree with

Eq. (1) when C has the value of Eq. (9). Under

the same condition, B becomes 2(6yo+1)/(By,
—1) and Eq. (1) is equivalent to Simon's result
with

C = (1+I') 't2& v (y + '-) —1],
av av, p av, o

(6) C =(B-1) ', B =(C+1)/C, (11a,b)

where e av = Vav /V0, Kav 0 = Kav 0/K0, and

y = —2(& lnK/& lnV)
av, o av, p

for the constant C in terms of the Simon expo-
nent & and the converse, respectively. The re-
lation y, = ,'qb, V/L+-3 d-erived in I for y, and

the corresponding value from Gruneisen's law

yield

in which Vav is an average value of the volume
over the range Vp to V~, Eav 0 is a correspond-
ing average of K over volume at the fixed tem-
perature T„and (81nK/& lnV)av 0 represents
a similar average at fixed temperature T,.
The parameter g is determined by

(6)

in which ~M av' RM av, yM av and oM av
represent mean values of K/K0, (K&) '—(8K/
BT)&, y, and a, respectively, ' over the tem-
perature range Tp to T~ at the fixed volume
~~, where n is the volumetric coefficient of
thermal expansion. For experimentally deter-
mined fusion curves in the extreme cases of
the highly compressible alkali metals' and the
relatively incompressible metal iron, ' one can
show that g can be neglected relative to unity;
the conclusion is probably general.

C=qK 4V/I. , C=2(n K V /C -3), (12a, b)0'000', O

respectively, where q is a parameter closely
equal to unity, ~ V and L are the change in vol-
ume and the latent heat at fusion, respective-
ly, and &0 and Cy 0 are values at the initial
point of n and the heat capacity Cy for constant
volume, respectively.

Values of y 0 for the alkali metals deduced
by means of Eq. (6) from the constants C giv-
en by Kraut and Kennedy' are compared in Ta-
ble I with corresponding values of yav from
III and of yo from I; the final entry in each case
is the value of y under standard conditions from
Gruneisen's law. The parameter b'av was de-
termined from the arithmetical mean compres-
sion (L0V/V0)av = I-b'av from data of Bridg-
man'0 for the alkali metals corresponding to
the pressure ranges (extending up to 50 kbar)
indicated by experimental points in the plot
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Table I. Comparison of the mean Gruneisen param-
eter b'av 0 as deduced from the constant C with other
values of y.

&~ V/V)
0 av 7 7av 0 av 0

Li
Na
K
Rb

0.149
0.202
0.3405
0.293

0.537 0.327
1.65 0.560
1.61 0.300
1.62 0.378

~ ~ ~ c

(1 2)

0.95
1.4

0.81d 1.17'
le 15 1e37
1.2 1.41
1.65 l.86

aFrom data of Bridgman (Ref. 10).
bFrom Kraut and Kennedy (Ref. 1) as converted to

values corresponding to use of absolute rather than
centigrade temperatures in Eq. (1).

Qilvarry (Ref. 6).
Gilvarry (Ref. 2).
From Qruneisen (Ref. 5) as corrected by Gilvarry

(Ref. 2).

of TM vs Ao V/Vo by Kraut and Kennedy. Birch's
isothermal equation of state" in the form P
=(2)KO(b'av '"—

b'av
'") was used to compute

Kav 0 = 2(7Eav —5Eav '"). One sees that
the values of yav p fall in the normal range

l
(up to about 3)" for Griineisen constants of
solids. No theoretical reason exists for b'av p
to be identical with b'av, since the latter param-
eter represents an average along the fusion
curve and corresponds to a range of pressure
up to only 12 kbar. Clearly, the values of b'av p
and yo are consistent with the known positive
sign of the derivative (By/&InV)T at the ini-
tial fusion temperature To for each element.

Contrary to possible implications of the dis-
cussions by Kraut and Kennedy' and by Kenne-
dy, ' it would seem from the present results
that Eq. (1) represents an interpolation (or
extrapolation) formula in the same sense es-
tablished for the Simon equation in lII on the
basis of the Lindemann law (and hence the re-
lation does not yield a fundamental criterion
of melting). In consonance with this interpre-
tation, the result of II from the Simon equation
for the melting point of iron at the boundary

of the inner core of the earth, given as 5.~
x10~'C with a stated limit of error of +25%,
agrees within the corresponding bounds with
Kennedy's estimate'~ of 3725'C from Eq. (1),
for a rea.sonably presumed error limit of +25%.
Note that Kennedy's estimation neglects the
effect of the terms of order (Vo —VM)' and (VO
—VM)(T~ —TO) implicit in Eq. (4), which can
be evaluated from this work.

These results obviously permit one to find
the form of Eq. (1) corresponding to low melt-
ing temperatures (as in molecular crystals),
when the quantization parameter QM of I does
not reduce to unity.
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