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Assuming an average value of v=285 MeV/c,
then the best fit of the experimental rates is
obtained with 6 =3.13 and y(v/m )2=183 sec™%.
With the coupling constants (i) we get y(v/my)?
=184 sec™!. With the constants (ii) we fit the
experimental result with A=54 or A=-8. For
A =-24 we get the value 298 sec™! which is too
high.

(6) Angular distribution of emitted neutrons. —
The angular distribution of the neutrons emit-
ted after the capture of polarized u~ is described
by a parameter @ introduced by Primakoff*
which is defined by
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From measurement in Ca* and $%2, it is known
that @ = =1+ 0.15."* The calculated value using
(i) is @ = -0.36 in bad agreement with the ex-
periment. More experiments of this kind are
needed to clear up this discrepancy complete-
ly. With the coupling (ii) we get always a >0,
in particular for A= -24 we get @ =+0.60 in

worse agreement with the experiment.

From all this it is clear that there is strong
experimental evidence in support of the con-
stants (i) and the same evidence rules out com-
pletely the second set of constants.
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It has been noted that for many detailed prop-
erties of group representations, such as gen-
erator matrix elements and certain Clebsch-
Gordan coefficients, tensor methods have not
been used.! The reason is because the basis
of decomposed tensors has usually been only
implicit.? The cause of this trouble is in a por-
tion of a theorem given by Weyl® which states
that if C is a Young symmetrizer, then the ten-
sors CF form an irreducibly invariant subspace.
Except for one-dimensional representations,
this is incorrect whether it is interpreted to
mean a single tableau and some set of tensors
F or whether it is interpreted to mean some
set of tableaux (of a given Young pattern) and
a single tensor F. This has caused consider-
able confusion in the physics literature. Most
authors use the first interpretation,*~® but the
second one has also appeared.”

We now show how to construct the irreduc-
ibly invariant subspaces. Denoting tableaux
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column and row permutations by g and p, re-
spectively, it is well known that for any given
tableau a minimal left ideal is generated by
the Young symmetrizer

PQ=EPq6q, (1)
bq

where the sums are over all column and row
permutations. The left ideals obtained from
the standard tableaux are linearly independent
and span the whole ring so that a Peirce reso-
lution of the unit element (¢) of the ring can
be written

e=2 (N“/G)(PQ) H ()
1, U

where N is the dimension of the representa-
tion (u) and G is the order of the permutation
group 8,.. The sum is over all standard tableaux
of all patterns of §,.. If a pair of tableaux Tz-“
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and ‘I‘j“ are related as

K U
T, -Sz.].q'j , (3)
then
K u
(PQ)Z. -sij(PQ)j sjl.. (4)

Henceforth, S;; will only be used to relate stan-
dard tableaux. A basis of the left ideal gener-
ated by (PQ)j“ is given by {Sij(PQ)j M} where

i ranges over all standard tableaux. Rather
than use this basis, the usual procedure is

to develop a basis from modified idempotents
(Young’s construction®) with which the natur-
al representation matrices of the permutation
group are more easily obtained. We do not
seek such matrices here and will instead use
the idempotents of Eq. (1). From Eq. (2) it

is clear that a tensor can be expanded as

I
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To obtain a basis of representation (u) we start
with any arrangement of indices ¢7--+Z, and
any standard tableau 7, and select the com-
ponents

oly

o ©
{wr/0s, P, T, ki
(4 ranges over all standard tableaux). These
components all appear in Eq. (5) because Sik
XTz'l- ‘i certainly appears as an index ar-
rangement and we can use Eq. (4) in the form
u o
. T , = ST, .
SJk(PQ)k i1ty (PQ)J SjTige “ly
Because the ideals of distinct standard tableaux
are independent, a second independent basis
is obtained with the components

1

0 n
/08, (P71, ;.
where ¢#%, index j ranges over all standard
tableaux, and the indices 71- -+, have the same
arrangement as before. Proceeding in this
way all standard tableaux are exhausted to
obtain a complete set of independent bases
of representation type (u). The set is complete
because all basic states appear among the com-
ponents of the Peirce resolved tensor and the
number of independent bases obtained is equal

to the number of standard tableaux. Indepen-
dent bases for the equivalent representations
are now written down in a form which clear-

ly shows that for all multidimensional repre-
sentations of the permutation group either in-
terpretation of Weyl’s statement fails to yield
irreducibly invariant subspaces.

First basis:

B ot K
Al =(N /G)(PQ)l Til"'ir’

Bt K
A, =(N /G)(PQ)2 Sleil“'iy’

B vk ®
An =N /G)(PQ)n Sanil"'ir.

Second basis:

1 eri

B “E(N“/G)(PQ)I“SIZTZ,1 .
)

B b H
B, =(N /G)(PQ)Z Til'“iy’

. u "
Bn =V /G)(PQ)n SnzTil"'i'r.

Nth basis (n =NH):

B M o
AL RN A

Bk u
Dy =t /opay, s, T,

I W W
o, =0r/61pQ) T, (6)

In another communication® it is shown how
these results can be extended to the unitary
representations, and how to use tensor meth-
ods to evaluate generator matrix elements,
group matrices (in polynomial form), Clebsch-
Gordan coefficients, and recoupling coefficients
for the classical groups.
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tation mentioned above. It is true that each Young tab-
leau labels an invariant subspace by defining one state
of the subspace, and these authors construct such
“Weyl” states. Using these initial states and shift
operations, ‘“Gelfand” states are obtained to complete
the basis and thus use of the erroneous portion of
Weyl’s theorem is avoided.

R. E. Behrends, J. Dreitlein, C. Fronsdal, and
B. W. Lee, Rev. Mod. Phys. 34, 1 (1962). On p. 22
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*VapePocaVach) ¥, b =2Wach *eap ~Vbca
—Vpa c) are a pair of equivaient representations of
SU(m) and that the meaning of “the states” here is the
same as for one-dimensional representations of the
permutation group. This corresponds to the first in-
terpretation of Weyl’s statement. Actually, it is nec-
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considering (a,b,c)=(1,+++,n) in order to get two
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ape 204 Tap, ¢ =Vabc—Vcba *¥bac—Vcab-
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95 (1966). Here one reads (p. 98) “The -+« set of all
tensors” YT;. ...;, whereY is the Young symmetry
operator of a Young tableau [Eq. (III.5)] “form the ba-
sis of an irreducible representation of SU,,.”

™. Hamermesh, Group Theory (Addison-Wesley

Publishing Company, Inc., Reading, Massachusetts,
1962). On p. 246 appears the statement ‘“We apply to
the function the Young operators corresponding to all
the standard tableaux for a given pattern to obtain the
basis functions for the corresponding irreducible rep-
resentation.” This is the second interpretation men-
tioned and thus the functions f; and f; shown are not a
basis of the two-dimensional representation, but rath-
er belong to independent equivalent two-dimensional
representations which, in fact, have bases f3,f3 and
f1f1, where

f3 = 3w (1) (3w (2)—u(2)v (3w (1)

+u(3)v (Lw (2)—u(3)v (2)w (1)],
f1 =3 @w(2)—u (2w (L)w(3)

+u(2)v (3w ()= (3)v (Lw (2)].
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land Publishing*Company, Amsterdam, 1963). The
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from {Sij(PQ)j“}, but it is necessary to use inspection
to identify the group operations as linear combinations
of these quantities.
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We present a model for baryon states based
on the chiral U(3)®U(3) algebra at infinite mo-
mentum. We shall explore the possibility that
the expectation values of the commutators of
the time components of vector and axial-vec-
tor currents! between stable octet baryons are
saturated by single-particle states and observed
resonances, and shall also consider the mag-
netic moments of these states. In the infinite-
momentum limit the chiral algebra is equiva-
lent to the collinear U(3)®@U(3) algebra,? whose
irreducible representations we shall label by
(n,m))k where n and m are the dimensions of
the SU(3) representations generated by V,* +A;
and V' -A,’, respectively; X is the eigenvalue
of the operator A,° (we shall refer to this as
the “quark helicity”).

In a first approximation, the octet baryons
and the helicity-3 decuplet states form the rep-
resentation (6, 3),,, and this classification leads
to the familiar static SU(6) results.’ Since some
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of these predictions do not agree with experi-
ment, we must allow the baryons to transform
reducibly under the algebra. In addition, in
order to obtain nonzero magnetic moments,

we must introduce an additional degree of free-
dom associated with an “orbital angular momen-
tum” excitation.® To be more precise, we de-
fine the “orbital helicity” by A;=J;—x where

J, is the true helicity. (We take the momentum
always along the positive z axis.) Thus we are
led to classify physical states as linear com-
binations of representations, [(z,m),,A3]. We
emphasize that in this scheme we do not require
the finite linear combinations of states of the
chiral algebra to comprise a complete repre-
sentation of SU(6)y,, and for this reason we
restrict ourselves to helicities (J;,x, A;) rath-
er than the full angular momentum.* Nor do
we insist that the states we consider are nec-
essarily those predicted on the basis of a sim-
ple three-quark model.®



