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PHASE TRANSITIONS IN THE HARD-SQUARE LATTICE GAS
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We wish to present here some results for
a two-dimensional lattice gas of hard-square
molecules; these results suggest the existence
of a first-order phase transition of the solid-
fluid type for molecules with an exclusion range
extending over first-, second-, and third-neigh-
boring sites of a square lattice. See Fig. 1.

Let us first recall the situation for the hard-
square molecules with first-neighbor exclusions
only [Fig. 1(a)]: Approximate treatments of
the Kikuchi type' lead to a second-order tran-
sition in the sense of Ehrenfest (finite jump
in the compressibility); more recently Gaunt
and Fisher2 by means of low- and high-densi-
ty expansions, and Runnels' applying the ma-
trix method of Kramers-Wannier to lattices
of infinite length and finite width, concluded
that this system presumably displays a second-
order transition of the logarithmic type.

Now molecular dynamics and Monte Carlo
calculations have shown that a system of hard
disks exhibits a phase transition which looks
like first order. It may therefore be expect-
ed that a two-dimensional lattice gas of hard
molecules will display a transition of the same
kind provided the range of interaction includes
a sufficiently large number of sites. We there-
fore carried out calculations similar to those
of Runnels' for systems of hard molecules with
exclusions extending up to second and third
neighbors.

We considered a cylindrical lattice of infinite
length and finite circumference N, and construct-
ed for each case the appropriate Kramers-Wan-

nier matrix M wherefrom the thermodynamic
pressure is obtained as

p/kT =(I/V) I~max'

gmax is the largest eigenvalue of M and was
calculated by an iterative process on a IBM
7040 computer as a function of the chemical
potential p, . The density p and the quantity kT
»p/B p, (proportional to the compressibility)
were subsequently obtained by differentiation.

For hard molecules with exclusions extend-
ing up to second neighbors [Fig. 1(b)] the even
cases 2 ~ N ~ 12 were handled; no anomaly was
observed in the compressibility for p(0.23
(maximum density is p = 0.25). The occurrence
of a weak transition (e.g. , third order) at high-
er density, though not completely ruled out,
seems rather improbable because this partic-
ular system does not reach a well-defined struc-
ture at close packing.

The case of hard molecules with exclusions
extending up to third neighbors [Fig. 1(c)] is
somewhat more difficult because M must now
take care of all possible configurations of two
neighboring rings of N sites. In order to allow
the system to reach the close-packing config-
uration of Fig. 1(c), N must be a multiple of
5. The values of kTBp/B gas a funct, ion of p/
kT are plotted on Fig. 2 for N = 5 and 10 (ma, -
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FIG. 1. Exclusion ranges and maximum-density pack-
ing for hard-square molecules with (a) first-neighbor,
(b) first- and second-neighbor, (c) first-, second-,
and third-neighbor exclusions.
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FIG. 2. Plot of kTBp/Bp vs plkT for fV =5 and 10;
hard-square molecules of type (c) of Fig. 1.
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trices 4&4 and 47&47, respectively, after due
reduction for rotational symmetry around the
cylinder). The small bump occurring around
p, /kT=3 for N =5 is readily changed into a high
narrow peak for N = 10 at p/k T = 3.6 with the
corresponding values p/kT =0.74 and p =0.175
(maximum density of this system is p = 0.20).
This clearly demonstrates that this system
will (in the limit N —~) display a phase tran-
sition. No definite conclusion about its exact
nature can be drawn here. It appears, how-
ever, that the peak of Fig. 2 is much sharper
than the corresponding one observed, by Run-
nelss for first-neighbor exclusions only', there-
fore, the transition reported here could well
be of the first-order type. This view is con-
firmed to some extent by approximate calcu-
lations for this same system based on the Rush-
brooke-Scoins theorem' (which is nearly equiv-
alent to the Kikuchi method): Including all con-
figurations based on groups of five sites and

less, we found a first-order phase transition
with the following features:

p . *=0.160, p . *=0.192, (p/kT)*=0. 738,fluid ' solid

(p, /kT)*=3.64, S . =0.78k,
fusion

in good agreement with the position of the peak
of Fig. 2.

A detailed account of this work will be pub-
lished soon. We are much indebted to Profes-
sor I. Prigogine for his constant interest in
this research.
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We wish to report some preliminary measure-
ments of the attenuation of ultrasound, n(&d, T),
in liquid He' at low temperatures and at fre-
quencies of 30, 90, and 150 Mc/sec, where
~ is the angular frequency and T the absolute
temperature. Interest in this work arose be-
cause of the disagreement among the va, rious
theoretical explanations advanced to explain
the attenuation and because the reported experi-
mental results failed to support any of the the-
ories.

Landau and Khalatnikov' made a power ser-
ies expansion of the dispersion relation, which
for small momenta can be written e(P) = cP(1
-yP'), where c is the velocity of sound. They
used the available experimental results to eval-
uate the constants and pointed out that y was
positive; consequently, energy and momentum
could not be conserved in a three-phonon pro-
cess. They concluded, therefore, that the low-
est order process that could contribute to the
attenuation was a four-phonon process. For
this latter mechanism, Khalatnikov' showed
that a varied as &T'. Others' ' assumed the
three-phonon process and found that e varies

as uT4. Kawasaki justified this assumption
by pointing out that if the energy uncertainty
(5e) arising from the finite lifetime (~) of the
thermal phonons satisfied the inequality 5e = k/
v ~ 3yPEh(d, then the three-phonon process
could take place. The average thermal phonon
momentum P is 3kT/c. Recently Kwok, Mar-
tin, and Miller and Pethick and ter Haar re-
calculated the attenuation arising from a three-
phonon mechanism by taking into account the
finite phonon lifetime and found'

w' (u+1)' ~(kT)'
60 p Vc'

& [are tancd ~—arctan( 2yp ~ T) ],

where p is the density and u = (p/c)&c/Bp. At
temperatures beldw 500 mdeg, +7» 1 for the
frequencies used in our experiments and one
can then replace arctanev by w/2. In the one
limit where —2yp(us& 1, one recovers the pre-
viously mentioned expression for the three-
phonon process, o. o=&T4; in the other limit
wllere 2yP (d7 & 1, OIle obtaills aII expressioI1
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