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It has been known since the first photon cor-
relation experiments were reported' ' that the
counts registered by a photoelectric detector
illuminated by a light beam from a thermal
source do not arrive completely at random.
In time intervals of order or less than the co-
herence time of the light, the probability of
counting two pulses is greater than that expect-
ed for random events. The "bunching" of pho-
tocounts has been most clearly demonstrated
in the excess coincidence experiments with
two coherently illuminated photodetectors. ' 4

Somewhat less direct evidence for the bunch-
ing is also contained in measurements of the
fluctuations of counts registered by a single
photodetector in a finite time interval. ' Yet
one of the most interesting features of the bunch-
ing, that the distribution of time intervals be-
tween successive counts is closely related to
the spectral profile in the ca.se of thermal light,
and may be used to determine the spectral pro-
file, has not so far been examined or put to
use. '

%e have measured the distribution of time
intervals between successive photon counts
of an illuminated photomultiplier in the range
1.4 to 10 nsec, for the light from a low-pres-
sure Hg' ' discharge lamp. The measurements
lead to a spectral width of the blue Hg' ' line
of about 200 Mc/sec. Although this appears
to be the first attempt to determine the spec-
tral profile of light from a thermal source in
this way, somewhat similar measurements
have been reported for light from a "pseudo-
thermal" source, ~' which is produced by mov-
ing a piece of ground glass in the path of a las-
er beam.

The experimental setup, which was similar
to one that was briefly described by Mandel, '
is shown in Fig. 1. A light beam from a low-
pressure Hg" gas discharge lamp passed
through a, pin-hole I' (diameter 0.54 mm), an
optical filter F that isolated the blue 5461-A
line, and a linear polarizer F,. The bea.m fell
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FIG. 1. The experimental setup.

on a 56 AVP photomultiplier through a rectan-
gular aperture S (0.37&&0.47 mm'), whose di-
mensions were small enough to ensure a degree
of coherence of at least 90% across the beam. "

The pulses from the photomultiplier were
shortened by reflection in a 1-nsec clipping
line, and were fed to a specially designed gated
pulse counter, which registered an output when-
ever two pulses appeared at the anode of the
photomultiplier with a time separation lying
between &, and &,. The time 7y was determined
by the difference of two cable lengths, and could
be varied by varying one of the lengths.
was determined by the width of the gating pulse,
and remained constant and equal to about 7.5

nsec as 7, was varied. Provision was made
for stabilizing the light output of the discharge
lamp by feedback from the gating-pulse circuit,
as indicated in Fig. 1.

The results of the measurement are shown
in Fig. 2(a), which gives the two-pulse count-
ing rate as a, function of the time interval 7,.
It will be seen that there is an increase in the
counting rate when ~, becomes less than 2 or
3 nsec, which is of the order of the coherence
time. This illustrates the bunching phenome-
non. For comparison, the results of similar
measurements carried out with a tungsten lamp
as source are shown in Fig. 2(b). The results
reveal no significant bunching of photoeounts,
since the coherence time is unmeasurably short
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where A(x, t) is the configuration-space photon
annihilation operator at (x, t), x is any point
on the photocathode, and:0: stands for normal
ordering of the operator 0. e is a constant
involving the .matrix element for the atomic
transition and other constants, and plays the
role of a measure of quantum efficiency. For
a plane beam of polarized light from a thermal
source, the density operator of the field has
a mell-known form, and the expectation value
in (I) may readily be evaluated. "~" We find

p, p„f,)bt, bf, =~2[I+ ly(t„f, ) t2]et, M„

where x is the mean counting rate of the illum-
inated detector, and y(t„t,) is the normalized
second-order autocor relation function defined
by

y(t„t ) = (A~(x, t, ) ~ A(x, t ))/(A~(x, t) ~ A(x, t)). (3)

I I I I

2 3 4 5
INTERVAL T; in n sec.

FIG. 2. Experimental results for the two-photon
counting rate obtained {a) with the Hg 88 light source;
(b) with the tungsten lamp as light source. The broken
horizontal line in each figure corresponds to the "ran-
dom" pulse rate, which is obtained by taking the aver-
age of a number of separate measurements covering
the range 7& =4 nsec to v&=8.6 nsec.

in this case.
The statistical accuracy in these experiments

was not high, since the counting rates were
limited by the low degeneracy parameter of
the source. " Each experimental point corre-
sponds to a measurement time of about 50 min.
It proved to be impossible to obtain meaning-
ful results for time intervals 7, less than 1.4
nsec, since the electronic gate then failed to
prevent single pulses from breaking through
and being counted as pulse pairs. This problem
is avoided in two-channel counting experiments
with two photomultipliers, at the cost of a four-
fold drop in the delayed-coincidence counting
rate.

Let us now briefly consider the explanation
of the effect. It can be shown"" that the joint
probability p2(t„t, )bt, bt2 of registering two pho-
tocounts at times t, and t, within Q, and 6t„
when the photodetector is illuminated normal-
ly by a plane light beam, is given by

pa«i f2)«i~f2=&'(:[A (»t.) A(x, t, )]

x[A~(x, t, ) ~ A(x, t, )]:)bt,6t„

For a stationary field the averages are of course
independent of the origin of time and y(t„t, )
is a function only of the difference & =t,-t,.
In Eq. (2) it is assumed that the counts regis-
tered by the detector are all due to the absorp-
tion of photons. In practice, each photodetec-
tor also has a mean residual counting rate b

(dark current), which is unrelated to the inci-
dent light. This amounted to about 3000 counts/
sec in our case, as compared with ~=10000
counts/sec. Eq. (2) therefore needs to be mod-
ified in practice and should read

p2(t„t2)bt, bt2 = [(x+ b) +2r ly(~) I ]bt, bt2, (4)

A counting device that accepts pairs of pulses
with an interval separation & in the range 7,
-7-7, will therefore count at the rate

R= f 'p, (t„t,+T)dT
T

= (r+ b)'(~, -~,)+ x'f 'ly(~) I'dT
1

=R(random) +R (excess).

In this equation the first term represents the
"accidental" or random rate of pulse-pair count-
ing which remains constant as long as ~,-~,
is constant, while the second term represents
the "excess" counting rate due to the bunching
phenomenon which varies with &,. Since ly(v) l

becomes very small for values of & appreci-
ably in excess of the coherence time of the light,
it is clear that the second term responsible
for the bunching contributes significantly on-
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ly for values of ~, which are of order or less
than the coherence time. This is borne out by
the results of Fig. 2. For the same reason
the upper limit T, in the integral in Eq. (5) may
be replaced by ~ to a good approximation, since
T2 Ty 7 5 nsec and T, was never less than about
9 nsec in the experiment.

The broken curve fitted against the data of
Fig. 2 is the form of P~' Iy(w) I'dT correspond-
ing to a Lorentzian spectral profile, for which

y(T) = exp(- I T I/T ),
C

1 Iy{v)l2d7 = &T exp( —2T /T ), 7. ~ 0 (7)
c 1 c'

where T~ is related to the spectral width Av

at half-height by Tc -—1/v&v. The plotted curve
corresponds to a value of T~=1.v nsec, or
to Lorentzian spectral width & v of about 200
Mc/sec.

However, we can show that the spectral pro-
file cannot actually be Lorentzian in the wings.
The form of the spectral profile in the wings
is largely governed by the behavior of Iy(7') I

in the neighborhood of small T, and it is inter-
esting that some information about this behav-
ior can actually be deduced from Eq. (5) and
from the measurements, even though experi-
mental points were not obtained in this region.

According to Eq. (5), the ratio of the "excess"
to the random counting rate extrapolated to
zero delay is given by

excess rate (7, =0) r'f„ ly{~)I'dT

random rate (r+ b)'(~, —~, )
'

and, since R(random) does not vary with 7„
the slope of the counting rate extrapolated to
zero delay has the value

(dR/d~, )
1

r'Iy(0) I' =—r' = -10 counts—/sec'.

This slope is much less than is indicated by
the broken curve in Fig. 2(a). Although the
value of fo Iy(~) I'dr is not known, since a por-
tion of the curve is missing in Fig. 2(a), yet
it is possible to make an estimate of the val-
ue of the integral (say 2 to 8 nsec) merely by
inspection of Fig. 2(a). When this value is sub-
stituted in Eq. (8), we can compute the excess
rate at w, =0, and, with the help of (9), sketch
in how the plotted curve should be extrapola-

ted. Once the position of the intercept is found,
a better estimate of I, Iy(~)I'd& can be made
which, in turn, can be used to correct the val-
ue of the intercept. By proceeding iterative-
ly in this way we find that"

f ly(v)I2dw=2. 8 nsec, (1o)

that the excess rate at ~, =0 is about 15.6 counts/
min, and that the curve cuts the vertical axis
at R = 87 counts/min. The curve is therefore
expected to continue as shown by the dotted
curve in Fig. 2(a).

It appears, then, that the method of pulse-
interval analysis can be used to obtain a sub-
stantial amount of information about the auto-
correlation function and spectral profile of
thermal light, even when the results are of
limited accuracy and cover only a limited range.
The method becomes increasingly attractive
as the coherence time of the light increases.
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FIG. 1. Meson-baryon cross sections and relations
(3a), (5a), and (Gb). 0 left- and right-hand sides of
Eq. (Sa), ~ left- and right-hand sides of Eq. (5a), 0
left- and right-hand sides of Eq. (5b).

The large amount of precise experimental
da, ta, now available on total cross sections for
meson-nucleon scattering presents a challenge
to the theorist. ' Sy~metries"' and quark mod-
els' have had a, certain degree of success in
obtaining relations between these cross sections
which are in agreement with experiment. How-
ever, some predictions from SU(3) symmetry
seem to be in disagreement with experiment. "'
Furthermore, the most striking regularity of
the data has not been predicted by any of these
symmetries or qua, rk models, namely the equa, l-
ity of the K+P and K+n total cross sections over
a wide energy range. '" Many models and the-
ories predict that a,ll meson-baryon cross sec-
tions become equa, l a.t sufficiently high energy. 4'
However, experimental data show that some
of these are more equal than others, as indi-
cated in Fig. 1. This feature has not been pre-
dicted by any of the higher symmetries which
include SU(3).

We should lake to show that good agreement
with experiment is obtained by a, slight exten-
sion of the qua, rk model4 a.long the lines suggest-
ed by Kokkedee and Van Hove. ' In addition to
the additivity assumption for the two-body quark
scattering amplitudes assumed in the previous
treatments, we have certain simplifying assump-
tions about the two-body quark-quark and quark-
antiquark s cattering a,mplitudes. The ba.sic
physical idea is that scattering of 6- to 20-BeV/c
mesons is sufficiently close to the asymptotic
region so that the two-body scattering a.mpli-
tudes exhibit some, but not a,ll of the a.symp-
totic features. In particular, it is assumed
that the quark-quark amplitudes exhibit these
asymptotic features, while they are not yet
present in the quark-antiquark amplitudes,
possibly because of the presence of the anni-
hilation cha, nnel in the latter. We consider
several different combinations of these assump-
tions, both with and without SU(3) symmetry.

In order to enable a fair comparison with

experiment of different treatments, we express
all predicted relations between meson-baryon
total cross sections fn the following standard
form: The expressions on both sides of the .

equality involve only sums, no differences.
They are normalized so that in the limit where
all meson-baryon cross sections are equal,
the expressions on two sides are just equal to
the common meson-baryon cross section. We
first list relations which have been previously
obtained. We consider only total cross sections,
which are related to the forward scattering
amplitude by the optical theorem.

The antisymmetric sum rule4 follows direct-
ly from the ba.sic additivity a,ssumption of the

quark model, without a,ny symmetry assump-
tions. In our standard form this becomes

8 +0 ~ +(T

=l[ (ff'P) o( P) ~(R'P)].
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