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absorption in crossed fields" shows that the
Franz-Keldysh exponential edge is not dramat-
ically affected by low magnetic fields, which
is in agreement with the two-band model. In
a magnetic field of 100 kG and electric field
5x104 V/cm, the predicted decrease of cyclo-
tron frequency in germanium amounts to 6-7%.
Another optical crossed-field investigation in
this material" seems to confirm this predic-
tion. The approach presented is also valid for
more general formulation of the Franz-Keldysh
effect than that given by Tharmalingam' and
for the description of tunneling phenomena in
diodes in the presence of a magnetic field (Haer-
ing and Adams's).

We would like to thank Dr. H. C. Praddaude,
Dr. Q. H. F. Vrehen, and Dr. Y. Yafet for in-
teresting discussions and remarks.
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COHERENT ELASTIC SCATTERING AND INCOHERENT INELASTIC SCATTERING
IN PROTON-NUCLEUS COLLISIONS AT HIGH ENERGY*

Recent data on proton-nucleus scattering
at 19.3 GeV/c show typical diffraction patterns. '
For heavy nuclei they are similar to those
observed from nuclear scattering at low ener-
gy, while somewhat different characteristics
are shown by light nuclei. The difference may
be attributed to incoherent scattering from
nucleons in the nucleus which is more impor-
tant for light nuclei where the transparency
is larger due to the shorter paths of small-
impact-parameter projectiles within the con-
stant-density nuclear matter.

The present note uses a simple scattering
model in order to extract geometrical and dy-
namical information from the experimental
data about the target nuclei. The diffraction
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patterns are interpreted with the strong-absorp-
tion model (SAM)~ which takes into account
both the shadow effects of elementary plus nu-
clear inelastic open channels and the effect
of Coulomb interaction. The large-angle cross
section for light nuclei is interpreted as a free
proton-nucleus scattering operating between
the projectile and a small fraction of the tar-
get nucleons. This incoherent scattering is
mainly an inelastic process by which the tar-
get nucleus may be transformed either into
an excited state or directly into a daughter
nucleus by the recoil or knock-out, respective-
ly, of a few of its nucleons. Such events were
not separated experimentally from the true
elastic-scattering events.
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tential scattering, and & allows for small trans-
parency for partial waves of low l.

The analytical treatment of the SAM is in-
dependent of the specific functional form of
g(l). The only practical requirement is that
dg/dl possess a simple Fourier transform:

F(&8)= —exp[-i(l —I.,)8]dl,dg
U d

where 4 is the "rounding" parameter of g.
The differential cross section for elastic

scattering, up to second order in &/L„ is
given by

Z, (kR 8)
&sin8/ 8

(sin8& "'
+ ~+I ., I f (8) [~,(&~8)]', .

In the following analysis we have chosen the
Woods-Saxon shape for the absorption ampli-
tude,

g = (1+exp[(L,-l)/6]}

For this choice

y'(&8) = m&8/sinh~a8.

Following Ref. 1, a correction term

dn="("'
ko (p, p)

4n

-10l t I

is added to account for the incoherent inelas-
tic scattering. N(A) is the number of nucle-
ons in the target that act as independent scat-
tering centers. &tot(P, P) is taken from pro-
ton-proton elastic scattering at 19.33 GeV/c. 4

I t I is the four-momentum transfer squared.
The fit obtained is illustrated in Figs. 1 and 2.
The parameters are listed in Table I where
they are compared with those measured from

The total nuclear cross section is

= 2~x'(1-~)[1+ -'~'(d/Z)2]
tot 3

where d is the spatial diffuseness of the inter-
action region,

5 =Ad.

The total reaction cross section is

0 —g+2((1 q)2[1 p Zga(d/P)2]
abs

+ [(1-e)'--',(~/&)'1(2d/&)].

Table I. Parameters obtained from a best fit.

R
(F)

SAM Ref. 5

fp
(F)

SAM Ref. 5

d
(F)

SAM Ref. 5

Li6
L'
Be'
C12

Al
83.6

Pb2PZ. 2

U238

2.19
2.17
2.67
2.51
3.33
4 49
7.09
7.21

7 P

1.20
1.14
1.29
1.10
1.11
1.12
1.20
1.16

1.18

0.60
0.56
0.46
0.48
0.57
0.63
0.50
0.56

~0 57
-0.57
-0.45
~0 50
~0 59
-0.57
~0 52
~p 64

-0.05
—0.07
—0.05
-0.17
-0.16
-0.17
-0.22
-0.27

0.38
0.29
0.43
0.23
0.10
0.0
0.0
0.0

3.9
3.8
4.1

4.1
7.0
8.9

10.2

Table II. Comparison between experimental and theoretical cross sections.

Theor. Exptl. The or.

Oabs
(F')

Exptl. Theor.

~el
(F)

Exptl.

Li
Be
Cu
Al
Cu63 6

Pb2PZo2

U238

23.4
25.6
28.0
34.2
69.2

135.1
321e3

332.9

23.2
25.0
27.8
33.5
68.7

136.0
329.0

19.2
20.2
22.5
24.9
46.8
84.0

180.1
187.1

19.4
20.8
22.7
25.4
47.2
85.0

175.0

4.2
5 4
5.5
9.3

22.4
51.1

141.2
145.8

3.8
4.2
5.1
8.1

21.5
51.0

154.0
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electron scattering. ' Comparison between
experiment and theory for the total absorption
and total nuclear scattering is carried out in
Table II.

The following conclusions may be drawn from
our analysis: {I)The strong interaction form
factor is similar to the electromagnetic form
factor. (2) The real part of the nucleus-pro-
ton nuclear potential is repulsive at the sur-
face of the nucleus (the real phase shifts are
negative at the surface). (3) The cross section
for low-energy nuclear channels is small for
heavy nuclei and increases with decreasing
mass number. (4) The mean free path of 20-
GeV/c protons in nuclear matter is small in
comparison with the radius of medium-weight
nuclei.

While this work was being completed, the
authors received a report from W. E. I'rahn
and G. %iechers describing a similar analy-
sis' for heavy nuclei.
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Scharff-Goldhaber and McKeown' have recent-
ly measured the I- internal-conversion coeffi-
cients for the 57.6-keV 8 -8+ transition in
Hf"' (Fig. I) and found that no mixture of ex-
clusively odd-parity multipolarities (i.e. , El,
M2, etc. ) would fit the data. Scharff-Goldhaber
and McKeown show that their result can be in-
terpreted as indicating that the transition has
mixed parity, 90.5% EI + 9.5% Ml, although
(as they point out and Hager and Seltzer' dis-
cuss in more detail) penetration effects offer
another possible explanation. The purpose of
this note is, first, to show that the parity mix-
ing that must be invoked in order to fit the con-
version-coefficient data is inconsistent with
the properties of the 501-keV crossover to the
6 state, and second, to point out that the se-
lection rule that inhibits the emission of E1
radiation in the 57.6-keV transition must also
affect the decay of the state by M1 radiation.

To illustrate the first point, we note that a
positive-parity component in the 1143-keV state
would permit an E2 transition to the 6+ state
at 642 keV. Angular-correlation studies3 show
that the 501-keV gamma ray is 3.6% quadru-
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FIG. 1. The low-lying states of Hf~ . The 57.6-keV
E1 transition between the 8 and 8+ levels is inhibited
by about 10~~.

pole. Since the correlation cannot distinguish
between parities, this 3.6% may be taken as
an upper limit on the E2 component. In com-
bination with the lifetime and branching ratio,
this upper limit leads to &E2-8.4-x10' sec for
the 501-keV gamma ray. Interpreting the Scharff-
Goldhaber and McKeown result as arising from
a parity violation leads to 7~1 = 5.2 @10 sec
for the 57.6-keV transition.

The relevant part of the wave function for
the 1143-keV state can be written


