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Recently a series of articles' &' was published,
concerning the impossibility of explaining mass
splitting within the context of finite-order Lie
algebras, containing the Poincard (inhomogen-
eous Lorentz) Lie algebra L. It is the aim of
this Letter to analyze the results of the quoted
articles, and to show that —lacking mathemati-
cal rigor —the author did not prove what he in-
tended to.

To begin with, let us discuss the problem
of mass differences. ' The author claims that
if the operator P' representing P PI" is self-
adjoint on the Hilbert space H on which a rep-
resentation of a Lie algebra E 31.is defined,
and if its spectrum contains a (real) eigenval-
ue m', then the (closed) eigenspace Hm of P
belonging to m' is invariant with respect to
the operators representing E. We remark that
all that is used about m2 is the fact it is a point
in the discrete (also' called point) spectrum,
and it may, or may not, be isolated. Let us
analyze the demonstration. We shall denote
by DPC) the domain of the operator X on H;
obviously Hm C D(P'). Let e represent on H

any element of E, and H~e be the subspace
of those 1't in H~AD(e) such that

N
ehC A D(P ).

+=1

From the nilpotency of P&P~ in the enveloping

934

algebra of E, we know that adNP =0. We can
then consider (P2-m2}Neh and, since (P -m )h
=0 for h C H~, we have

(P -m ) eh=(P -m ) [P,e]h,
2 2N 2 2N1 2

from the definition of the commutator, an ex-
pression which is well defined (notice that we
cannot replace the commutator by its value
before checking that the obtained expression
is defined). Thus

(P -m } eh = [(ad P }e]h =0,2 2N N 2

and therefore eH~ CH~. We can infer there-
from that the space H~ is invariant only if
H~ is dense in H~, for every e in the repre-
sentation of E. Now, the set

N
H =QCH;h CD(e), eh C A D(P )]

@=1

is in general a dense subspace of H (not coin-
ciding with H), and H~ =H~AH . Instead
of all the H 's, we can also consider a dense
subspace D of H, on which all operators repre-
senting finite-order elements in the enveloping
algebra of E are defined (this is usually the
case'); if Hm'=H~AD, we shall have eH~'
( Hm for all the e's.

But, in a Hilbert space H, the intersection
of a closed subspace F with a dense subspace
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(let us denote it by D) is not in general dense
in E; for instance, we can take for I' a finite-
dimensional subspace, generated by some ele-
ments of H not belonging to D. Even the inter-
section of two dense subspaces may be (0) (cf.
reference 3, XII, 9.34).

Thus, we see that the claimed result is not
proved; moreover, it is very likely wrong in
the above formulation.

Let us now analyze the assumptions (cf. refer-
ence 1) on which this 'theorem" is based. Let
us grant the self-adjointness of P; the "dis-
creteness" of the eigenvalue of P', an eigen-
vector of which represents a particle, is not
used in the "proof, " a.nd therefore the distinc-
tion made afterwards between a bump and a
"discrete" eigenvalue is irrelevant. As for
the first assumption, it is usually admitted that
two particles belonging to the same physical
multiplet belong to the same irreducible repre-
sentation of the internal algebra, and this does
not imply that they belong to the same irreduci-
ble representation of the combined algebra.

In addition to this, one should keep in mind
the following possible realizations of the link
between masses and the operator P'. One may
consider expectation values, or a density in
the spectrum, or use representations in spaces
more general than Hilbert space.

The quoted papers' contain in addition some
structural considerations, based on the Levi-
Malcev theorem. The problem tackled being
very general, it is difficult to obtain but quite
superficial results. [On the contrary, with

proper minimality conditions, the present au-
thors5 obtained, among other results, restric-
tions on internal symmetries, excluding com-
pact ones. ] Moreover, the results obtained
-which could have been easily refined by use
of deeper properties (such as the Iwasawa de-
composition ) —are, even when given unwieldy
proofs, immediate, if not already known. For
instance, from the construction of semidirect
products, ~ and because the derivation algebra
of the translation (real) Lie algebra P is GL(4, R),
whose only semisimple subalgebras' that con-
tain the (homogeneous) Lorentz Lie algebra
M realized as SO(3, 1) (in order to get the com-
mutation relations of L) are SL(4, R) and M,
we get that if E3J and P is an ideal in E, any
Levi factor of E is isomorphic to G= Gp G~,
where Go =SL(4,R) (complex type A3) or M (type
A, SA~). This is "theorem D" of reference 1,
with the exception that Go cannot be of type B„

as incorrectly stated there —no four-dimension-
al representation of a real (noncompact) form
of B, gives D(-,', —,') on M . The same considera-
tions applied to the one-dimensional Lie alge-
bra give "theorem A" of reference 1 (while,
e.g., "theorem 8" or the appendix are special
cases of known results). Moreover, the known
fact that the conformal (simple) Lie algebra
SO(4, 2) contains I. may be of interest. '

Let us now consider the use made of the so-
called redefinitions, e.g., in connection with
the "generalization'* of McGlinn's result. %e
shall assume that E is the direct sum of vec-
tor spaces M+P+ T (T: internal algebra), and
consider a Levi factor G of E such that M C G.
The "redefinition" of T that permits the (very
strong) assumption G = T+M, and is in fact
realized by means of a special automorphism, ~

is not a trivial mathematical operation, as we
can see by the following example'. Take T
=SO(4, 1), E the semidirect product of T (=G
here) by a 10-dimensional commutative ideal,
defined by the adjoint representation; then we
have 8 =M +P + T = L + T g L 8 T (M being "trans-
lated" of SO(3, 1) I- SO(4, 1) by a special auto-
morphism); moreover, we can correct (non-
trivially) P&P~ so as to obtain a "Casimir
operator" of E. Thus redefinitions are not
trivial mathematically. Notice also that the
formulas (8.8) of reference 1 do not give the
commutation relations of I and thus the dis-
cussion made about them is meaningless. As
for the so-called "extended Han theorem, " the
Poincard-Birkhoff-%'itt theorem seems irrele-
vant, as e = W&W~/P&PI" is not defined in
the enveloping algebra of L.

As to the physical point of view of the redef-
inition problem, the authors think that it is
more a question of a good choice of a particu-
lar example than a matter of opinion. More-
over, the choice of a bad example does, of
course, not imply that redefinitions are phys-
ically trivial.
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The most accurate determination of the pion-
nucleon coupling constant published to date is
that of %oolcock' using the dispersion relation
for the invariant amplitude 8+ in the forward
direction. (The subscript + refers to m+P elas-
tic scattering. ) This method gave

f' = 0.081 + 0.003.

Although we were satisfied that the method was
reliable and that the quoted error was realis-
tic, we thought that a more accurate result
could now be obtained by a more direct meth-
od. This is simply to re-evaluate the familiar
dispersion relations for the m+P elastic-scat-
tering amplitudes in the forward direction, tak-
ing account of the large amount of experimen-
tal data now available. This calculation also
yields the s-wave scattering lengths. Since
the results are interesting (and surprising),
we give here a brief account of the method used,
and of the values obtained for the constants.

Instead of writing the dispersion relations
in the usual form, first written down by Gold-
berger, Miyazawa, and Oehme, ' we take advan-
tage of the sum rule discussed in the same
paper to eliminate one of the scattering-length
combinations. The most convenient form for
evaluation is to write D~, the real parts of the
m+P forward-scattering amplitudes in the lab-
oratory system, in the form

2f (d

1/2M 4vm

L

q ' o~((u ') o~((u ')

(d (8 -GO (d + (d
L L L L

S, c, and p. , the charged pion mass, are cho-
sen as basic units; qL, coL are the momentum

and total energy, respectively, of the incident
pion in the laboratory system; and M =Mp/
[1-(M„'-Mp')], where Mn and M~ are the neu-
tron and proton masses, respectively. 0+ are
the total cross sections for m~P scattering.
The constants A and f' are to be determined.

Using the language of charge independence,
if a, and a, are the usual s-wave pion-nucleon
scattering lengths for I = ~ and 2, respectively,
we have from (1)

D+(1)+D (1) =~ 1+
~

—(a +2a )
(

M~3 1

1 1 dm
L

M 1-1/qqq' 2q f, tq 'q

X 0'+ (d ' +cr (2)

D-(1)-D+(1)=
I
1+ I-(a -a )

1 I.2
+

i, M)3 1 3

4f2 du&

1-1/4M' 2m'J~ q

Xo ~ '-g (3)

3
"

2
q cota = Q a qn33

0

Thus, having determinedA and f, evaluation
of two further integrals gives (a, +2a~) and (a,
-a,).

The values of cr~ required to evaluate the dis-
persion integrals in Eqs. (1), (2), and (3) were
obtained as follows: Up to 400 MeV, the phase
shift a„for the I= & P», state was parametrized
using the form


