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momentum and total baryon number. This min-
imization procedure makes sense when (1) a
substantial barrier separates the desired min-
imum from any configurations of lower energy
which might lead to collapse and when, in ad-
dition, (2) the desired configuration and the
collapsing configurations differ so greatly that
one is in no danger of choosing trial functions
that contain appreciable admixture of the prop-
erties of such collapsing configurations.
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In a recent Letter, Streater’ has proven a
theorem on broken symmetry: If a conserved
current generates a transformation ¢, (x) = ¢, (x)
between fields corresponding to particles of
different mass, then there must be states in
the theory degenerate with the vacuum (in the
absence of states of negative norm). Streater’s
proof made use of certain assumptions on the
Lehmann weights for the two fields. In this
paper we show that by dropping these assump-
tions we still may obtain a result which is es-
sentially the same as the above.

The first theorem we prove is the following:
Let ¢,(x) and @,(x) be quantized fields (not nec-
essarily spin zero). Suppose there exists a con-
served current j# (x) such that

fdsx[jo(;{’t)) ¢1(y)]=‘pz(y)- (1)

Let |p,) be a state with energy-momentum p,*
for which (p,19,(0)10)#0. Then, if the vacuum
is nondegenerate, there must exist a state | p,)
with energy-momentum p,* =p,* for which

(p,19,(0)10)#0+ (p,17°(0)1p,). Conversely, if
no such partner |p,) for 1p,) exists then there
must be states degenerate with the vacuum.

This is essentially the result of Streater,
except that we do not impose his restrictions
on the Lehmann weights; in particular, we do
not demand that the propagators for the fields
have poles: We allow the fields to describe
only “composite” particles.

Consider the matrix element of Eq. (1):

J@x(p,1[°x2), 9,(9)]10) = (p,1 0,()10).  (2)

We now take the Fourier transform with respect
to time ¢ and the four-vector y, and insert a
complete set of states:

(P, ©,(0)10) 6 (p,~p,)5(q°)
=Z}ka(p2|]"(0,q°)lka)(kal¢1(P1)|0>

=T 15021 22(2)118) (1817°(0,4°)10). (3)
Now, if the vacuum is nondegenerate, the
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second term on the right-hand side must van-
ish.? By hypothesis, the left-hand side does
not vanish. Hence the first term must contrib-
ute. Conversely, if the first term does not
contribute,® the second must, and thus we en-
counter degenerate vacua, Q.E.D.

We now make the additional assumption that

Ja@x[ °*(xt), @5(9)] =1 (9). (4)

This would be the case, for example, if ¢, and
@, were the 1,2 components of an isotriplet

and [d®x j° were the generator of rotations about
the 3 axis. Applying the method used above,
assuming the vacuum is nondegenerate, we find

(£8190,(0)100=33 (p,817°(0)1p,) (p 1 9,(0)10),
(poy!9,(0)10)=3] B<p2ylj°*(0)lpzﬁ> (p,B19,(0)10),

which we combine to obtain

EB! (p,17°(0)1p,B) P =1.

Then it is easy to show

1 (p10,0)10)F
=Zﬁ| (P81 9,(0)10) 2 if p,2=p,2, (5)

which shows that the Lehmann weights must
coincide for all values of the argument. Con-
versely, if they differ at any point, then we
must have degenerate vacua.

It should be noted that we have been careful
not to use the terms “zero-mass bosons” or
“states of arbitrarily small energy.” We do

not want to imply that we have proved that which
we have not. In fact, let us be more precise

as to our use of the term degenerate vacuum:
We mean a state of zero total four-momentum
which differs from the original vacuum in the
values of some quantum numbers. The state
10’) which occurs in the second term of Eq. (3)
in the case of degenerate vacuum is such a
state. Notice that 10’) cannot be a Lorentz-
invariant state, for if it were then we could
easily show that (0’1" (x)10) =0 which is a con-
tradiction. Therefore, the degenerate state
10’) is not a true vacuum; furthermore, we
have infinitely many such states, obtained by
applying Lorentz transformations to |0’). Since
each such state contributes to the sum over
intermediate states, it is questionable wheth-
er the sum converges. Even if this difficulty
is surmounted, one must resist the impulse

to build inequivalent representations using the
states 10’) as cyclic vacuum states, since they
are not Lorentz-invariant states.
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There is a misprint: The assumption c¢; = 0 should be
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®The matrix element {0l Jd3xj°(xt)|0)=0 owing to
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the quantity (0lj#(x)|0) must vanish by Lorentz invari-
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This Letter reports the measurement of the
statistical distribution of photons from a Gauss-
ian radiation source synthesized through ran-
dom superposition of a great number of coher-
ent beams, and a comparison with the distribu-
tion of non-Gaussian sources, through a photo-
electron counting technique.

The Gaussian radiation source is obtained
by sending the light of an amplitude-stabilized
single-mode He-Ne laser onto a moving ground
glass disk, and observing the random super-
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position of the diffracted contributions within

a coherence time and a coherence area! follow-
ing a procedure first introduced by Martienssen
and Spiller in connection with a different illu-
minating light.? Actually the 6328A laser light,
fully polarized, with TEM,, field cross distri-
bution and 10™3-rad divergence,® is focused
through a lens of 2-cm focal length onto a spot
of 2x10~%-cm size over a glass disk ground
with average irregularities size around 3x107*
cm. Diffraction of this field gives rise to a



