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BY FI UCTUATION AVERAGING*
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Measurements of Ericson fluctuations' in
the cross section have enabled determinations
of the average widths I' of nuclear states when
the states are broadly overlapping. ' However,
these measurements require the energy spread
(resolution p) in the bombardments to be less
than I", and so practical considerations have
limited measurements to the j. ~ 5 keV of me-
dium-light nuclei at excitation energies above
15 MeV. We report here a method of fluctua-
tion averaging that allows the measurement of
widths that are orders-of-magnitude smaller.
In these first measurements, 0.1-keV widths
of the compound nucleus Zr' have been mea-
sured between 17- and 21-MeV excitation en-
ergies.

These widths were determined from measure-
ments of the amount that the fluctuations in the
cross section are reduced by fluctuation aver-
aging, which results from the resolution sig-
nificantly exceeding the average width. To
develop the effects of fluctuation averaging
quantitatively, we first consider other effects
that decrease the fluctuation. For conditions
of good resolution, p & 2, the fluctuation in terms
of the autocorrelation function R =- ((o')-(o)')/
(o)', which is simply the normalized variance
of the cross section 0 for the over-all sample,
is

Here, the fluctuation damping factor Neff is
the effective number of rn states, and y is the
fraction of direct reactions.

The reaction Y"(p, ao)Sr ' was used in the
present measurements of differential cross
sections cr(8) at angles 6 = 51' and 129' to pro-
vide a low, well-established' &' Neff =2 from
the & spins of Y~ and the proton. Energies
used were near or below the Coulomb barrier
of the exit alpha particles, and the fraction
Y of direct reactions was then either negligible
or a small quantity determined by other means.
If the resolution condition p & I' of Eq. (1) were
achievable with present technology, large fluc-
tuations resulting in R =0.5 from Eq. (1) would
be observed for Y =0. Actual resolution con-

(1-y')
(p/w r +1)pr

eff
(3)

The width I' can now be determined from Eq. (3)
by a measurement of the autocorrelation R for
conditions where Neff y, and p are known.

The excitation functions shown in Fig. 1 re-
sulted from resolutions which were typically
p=6.0 keV, resulting largely from the 215-pg/
cm' target thickness of Y". In the combined
resolution, the small energy spread of protons
from the Los Alamos FN tandem Van de Graaff
had minor importance. Batteries of transmis-
sion-type, semiconductor counters were used
to detect alpha particles to the ground state
of Sr". An actual value of the autocorrelation
from these measurements, after bias correc-
tions, was R =0.026, which for 1Veff =2 and

y =0 in Eq. (3) results from a fluctuation aver-
aging over n = (1-y')/Nef f8 = 19 independent
energies within each bombardment span p of

ditions result in the autocorrelation function
R being further reduced by fluctuation averag-
ing. However, the statistical knowledge"4'5
of the biases and uncertainties in autocorrela-
tion functions now enables analyses of fluctua-
tions from realizable experiments that are
more than an order of magnitude smaller than
R =0.5.

The decrease in fluctuations from fluctuation
averaging results from each cross-section
measurement being an average over a cross
section that fluctuates within the energy reso-
lution of each bombardment. To determine
the width I" from fluctuation averaging requires
a statistical knowledge of how rapidly in terms
of I' the cross section changes with energy.
This can be expressed in terms of the effective
number"4" n of independent energies contrib-
uting to a single measurement. For a rectangu-
lar resolution function,

n = (p/v I ) + 1.
With each of these n independent energies de-
creasing the fluctuations through the averaging
process, the autocorrelation is further reduced'
by the factor n

' to
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FIG. 1. Fluctuations in the Y (p, ao)Sr cross section. Measurements were in 4-, 5-, or 6-keV energy steps
with energy resolutions p typically equal to 6.0 keV.

o(e) =(4m) P o f /f. ,J J (4)

where J is the compound-nucleus spin, o& is
the capture cross section, and I'&~ is the width
for alpha decay to the ground state. In the pres-
ent calculation the angular distribution was

energy. Use of n =19 and the known p=6.0 keV
in Eq. (2) results in an average width of I'= p/
(n-1)w =0.11 keV. (In the actual analyses, a
small correction was made for the nonrectan-
gular resolution functions encountered. )

The measured widths in the upper part of
Fig. 2 involved appreciable fractions y of di-
rect reactions only for 6I = 51' at 10.6-MeV pro-
ton energy (y = 0.37) and II =129' at 12.6 MeV

(y =0.34). These were determined from the
lower part of Fig. 2 by y =1-Ia(II)/(o(8))], where
o(I)) is the calculated compound-nucleus cross
section normalized at 9-MeV proton energy
to the measured cross section (cr(8)), in which
the fluctuations have been further reduced by
the use of a large resolution (15 to 210 keV).
Two arguments assure that the measured cross
sections in the region of the peak at the 9-MeV
normalization energy are dominantly from com-
pound-nucleus reactions. First, the cross sec-
tion exhibits fore-aft symmetry at the angles
measured (and in detailed angular distributions),
and second, compound-nucleus reactions are
expected to produce a peak in this region where-
as direct reactions are not.

The compound-nucleus cross section for each
proton energy was calculated by the Hauser-
Feshbach method,
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FIG. 2. Determination of Zr widths. The lower fig-
ure shows the gross excitation function measured with
large energy resolutions. Uncertainties include both
measurement uncertainties and cross-section fluctua-
tions. Calculations of this excitation function and the
width (upper figure) are described in the text. The mea-
sured widths in the upper figure are based on the fluc-
tuations in Fig. 1 and on fractions of direct reactions
determined from comparisons of measured and cal-
culated excitation functions in the lower figure.



Voj'UMz 15, NUMazR 20 PHYSICAL REVIEW LETTERS 15 NovEMszR 1965

considered isotropic, and the neutron exit chan-

nels were assumed to dominate in the total width

I ~ for compound-nucleus decay. The level
densities D~ ' of both the compound and final
nucleus were determined from the statistical
model with parameters from Gilbert and Cam-
eron. ' The width 1~ was determined from the
sum 2vt'~/D&=pf Tff over the neutron trans-
mission coefficients7 Tff to the final states
f. Only allowed combinations of orbital angu-
lar momenta l, nucleon spin, and nuclear spins
were included in the sums. The alpha-particle
width was calculated from 2ml' ~/D&= T&o,
and optical-model determinations' were used
for the capture cross sections cr&~.

The calculated width in the upper part of
Fig. 2 was obtained by I ' =P&I'& 'o&/P~&,
which approximately represents the resultant
width observed from fluctuations. When con-
sideration is taken of the approximate nature
of the statistical model, the omission of charged-
particle exit channels, and the neglected cor-
rections~ for large transmission coefficients
in the I ~/D~ determination, the agreement
between measured and calculated widths could

be somewhat different.
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Quite recently a representation for the two-particle partial-wave (potential) scattering amplitudes,
both off and on the energy shell, was described in terms of a solution of a manifestly nonsingular in-
tegral equation. Besides exhibiting desirable qualities with respect to unitarity and threshold behav-
ior in connection with the on-shell amplitudes, it was also pointed out that certain features of this
representation suggest a separable approximation to the off-shell amplitudes which permits a sim-
plification of the Faddeev equations. In the present note we first wish to establish the equivalence
of the results of reference 1 to those of a previous, apparently different, analysis. This, we feel,
may make manifest the mathematical implications of this representation. Then using the methods of
reference 3 we will determine an explicit general form for the nonseparable part of the off-shell am-
plitude which should be useful in estimating the magnitude of this term. Some comments on off-shell
unitarity are also made.

In order to include the equations employed by Lovelace, it will be convenient to consider first the
integral equation

K(P, k) = V(P, k) + —PJ dq, , V(P, q)K(q, k),
m 0 &-q

(2)

which is satisfied by the partial-wave amplitudes, K(p, k), of the K matrix. '~' Equation (1) can be re-
duced to a Fredholm form by setting p = k in (1), multiplying this by 7(p, k) = V(p, k)/V(k, k), and sub-
tracting the resultant expression from (1) to obtain

K(p, k)=7'(p, k)K(k, k)+ f dqA(p, q)K(q, k),


