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When a long supereonducting cylinder is placed
into an axial magnetic field whose value is be-
tween the upper critical field H~2 and the sur-
face nucleation field H~3, then the surface is
in the supercondueting state, and the core of
the cylinder is in the normal state provided
the thickness of the surface sheath b, is small
compared to the radius of the cylinder R. Al-
though the metal is singly connected, the super-
conducting surface is multiply connected. By
analogy with a superconducting ring, one could
imagine that a persistent current could be in-
duced in the surface sheath provided the sur-
face sheath is able to carry a total current.
Such a current could easily change the magnet-
ic properties of a superconducting cylinder.

We shall show that such a current can indeed
be induced in the surface sheath and that its
magnetic moment can be either diamagnetic
or paramagnetic according to whether the mag-
netic field is increased or decreased, respec-
tively. It is found that these currents are size
dependent and have an appreciable effect on
the magnetization for Ginzburg-Landau ~ val-
ues of order unity and for applied magnetic
fields close to Hc2. It is also shown for a cylin-
der that the induced magnetization per unit
volume is always considerably larger than the
inherent diamagnetic magnetization per unit
volume of the surface sheath (in its lowest en-
ergy state), although the induced surface cur-
rent is always considerably smaller than the
inherent surface currents provided R is very
large compared to the penetration depth w.

The free-energy difference between the super-
conducting state and the normal state in an ap-
plied magnetic field is, in the usual normalized
Ginzburg- Landau' notation,
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tion of the order parameter g and the vector
potential A. When we are searching for the
lowest energy state we vary Eq. (1) with re-
spect to the functions g and A which leads to
the first and second Ginzburg-Landau equations.

When a persistent current is induced in the
surface sheath by changing the applied magnet-
ic field, the sheath is not in the lowest ener-
gy state but in an excited stable state. We now

define the maximum persistent current which
the sheath may carry as the critical current
and the critical state as that state for which

FS Fgr in-Eq. (1) is zero. The right-hand side
of Eq. (1) is a function of two independently
variable functions g and A. We make the as-
sumption that the free-energy difference Eq. (1)
is still minimized with respect to g but not any
longer with respect to A. This means that the
first Ginzburg- Landau equation applies,

[(i /K)v +A I'y y+ I g I2q-= 0.

The appropriate functions A and g are deter-
mined from Eq. (2) and Eq. (1) with FS-FfV =0.
We have now two unknown functions and two
equations and our critical state is determined,
at least in principle. Substitution of Eq. (2)
into Eq. (1) leads (with FS-Fg =0) to

$d V((H-H )'--,' I / I ) = 0.

(2)

Let us consider a very long cylinder in an ap-
plied magnetic field parallel to the axis of the
cylinder. The magnetic field is between Hc2
and H~3 so that superconductivity exists near
the surface of the cylinder but is quenched near
the center of the cylinder (R»b). We assume
that g is of the following form (cylindrical co-
ordinates):

a =e' F(p),
where 5 is an integer (number of enclosed flux-
oids) and F (p) some function of p. The sym-
metry axis of the cylinder is the z direction
(p =0). The vector potential is assumed to
have the following form:

H, is the applied magnetic field, H(=curl A)
is the internal magnetic field, and the integral
extends over the total volume of the supercon-
ductor. The free-energy difference is a func-

A = (O'A 0)

(6)
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where a(p) is some unknown function of p.
From the definition of the flux,

4 = gH dS =/A dl,

it follows that a(p) must be zero when p = 0.
It is our objective to calculate the magnetiza-

tion per unit volume for a very long cylinder
when the critical current is floming in the sur-
face sheath. From Eq. (6) it follows that

1da
H =H +——,

z 0 p dp'

and from Maxwell's first equation

d t'1 daj(p—)=—!-—.
c cp dpip dp

'

From Eq. (8) and the definition of the magnet-
ization per unit volume we obtain

(8)
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One solution of Eq. (3a) is that the integrand
is zero. It can be seen readily that this solu-
tion is physically unrealistic for the folloming
reasons: The order parameter is zero in the
center of the cylinder and nonzero only near
the surface. When a current is induced near
the surface, the magnetic field near the cen-
ter of the cylinder must be different from the
applied field and hence (1/p)(da/dp) x 0 for p =0.
At the surface (1/p)(da/dp) =0. The boundary
values of (1/p)(da/dp) are just opposite from
those of I" 2 and therefore the integrand cannot
be zero.

In the lowest energy state'~' (when no current
is induced in the surface sheath) two currents
(per unit length of the cylinder) ZS1 and ZS2
of equal magnitude but opposite direction flow
near the surface. We associate with J~1 and

J$2 a magnetization per unit volume 4mMO

=2ao(R)/R' and with the induced critical cur-
rent (per unit length of the cylinder) Je a mag-
netization per unit volume 4mM, = 2a, (R)/R'.
We shall show below that M, »MO when R» A.

and there a, (R}»ao(R). We introduce the no-
tation a(p) = a0(p) +a 1(p) and j&(p) =j0(p) +j 1(p),
where jo(p) is the current density in the low-
est energy state and j,(p) is the current den-
sity of the induced critical current. We now
substitute Eqs. (4) and (8) into Eq. (3) and ob-
tain

Equation (3a) is integrated by parts with the
boundary condition a(0) =0 and Hz (R}=H0, and

one obtains

(a, +a,)(j,+j,)dp = ,'J -PF'dp.
0 0

(3b)

Exact solutions of Eqs. (2) and (3b) are dif-
ficult to obtain without a computer. However,
it is possible to find a very good approximation
to our problem which not only shows the essen-
tail features of the critical state but is also
in good quantitative agreement with recent ex-
periments. ' It is easy to see that within the
surface sheath a, (p)»a, (p) because it was as-
sumed previously (and will be proved below)
that a, (R)»ao(R). Furthermore, ao(p)/p changes
from ao(R)/R to zero within the thickness of
the surface sneath' but a, (p)/p becomes zero
only at p =0 and increases linearly with p over
most of the cylinder. We therefore can neglect
a, (p) with respect to a, (p) near the surface
of the cylinder in Eq. (3b). Further, it will
be shown below t.hat

I J I =I J, j (p)dpi«l&
R,

This implies that da, /dp is very small compared
to da, /dp over most of the surface sheath. At

P = R the derivates of ay and a, with respect
to p become zero because Hz(R) =H0 There-.
fore a, must be a very slomly varying function
over the surface sheath compared to ao, and
for the present considerations me shall assume
that a, (p) is approximately a constant over
the thickness of the surface sheath. Further-
more, it was shown2&' that

f, j.(p)dp=o

and, therefore, the integral on the left-hand
side of Eq. (3b) can be written as aal(R)Je,
where n is a parameter of order unity.

To first approximation, a, (p)/p will have
no effect on the solution of g because a, (p}/p
is also approximately a constant with respect
to ao(p)/p over the surface sheath. The vec-
tor potential A is shifted by approximately a
constant amount over the distance where g is
nonzero in Eq. (2), and since Eq. (2) is gauge
invariant this solution of g mill be very close
to that of the surface sheath in its lowest en-
ergy state. '

p will depend approximately only
on ~ and H0/He2 and not on Je since IJel«IJS1!.
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With the following definitions: 5.0 i 0 ' T

R
(p)dp,

0
(12)

0 = f. F'(p)dp/(f. I"(p)dp)', (13)

the right-hand side of Eq. (3b) is approximate-
ly PRE'F~(R)/2, where P is of order unity.
For simplicity we define the parameter 7) = (I3/
a)"', where 7) is also of order unity. From
Eq. (3b) and Eq. (10) the magnetization per
unit volume of a cylinder of radius R due to
the critical current J~ in the surface sheath
is

4vM, =~7) = F'(R).
VR

(14)

H (2x)'"s
4rM, = ~7)—I

—
I

—F&(R).
I, RI (14a)

In real units [unnormalized except F'(R)] Eq. (14)
becomes
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FIG. 1. The quantitv Q/'))[E2{R)/K] is shown as a
function of Hp/H&2 for various K values as calculated
from reference 2 for a semi-infinite superconducting
half-space. These results are applicable to a cylinder
when the radius R»4 {thickness of superconducting
sheath). The induced magnetization per unit volume
and the critical current per unit length are related to
the above quantity via Eq. {14a) and are size dependent.
Below H&2 the solutions are extended 40% into the
mixed state for type II superconductors without taking
the bulk solution into account.

q H (R&'"~ +'(R)

Mo 2K Ho Q] $ p.n(~) (ls)

When the sheath is in the critical state, it fol-
lows from Eq. (14a) that the magnetization per
unit volume can be either diamagnetic or para-
magnetic. The sign of the magnetic moment
depends on the direction in which the current
is induced according to Lenz's law. Various
materials with the same value of H~ but dif-
ferent ~ values will have a magnetization per
unit volume in the critical state which is ap-
proximately inversely proportional to K (for
the same value of Hp/H02). It should be noted
that 6/$ and F(R) are also functions of K and

Hp/Hc2, and these will change the simple 1/»
dependence of the magnetization. The values
of n/$ and E(R) may be taken from reference 2

and Fig. 1 shows the quantity (6/$)[F'(R)/K]
as a function of Hp/Hc2 for various K values
The magnetization per unit volume as mell as
the induced critical current are size dependent
and are inversely proportional to the square
root of the radius of the cylinder.

For a cylinder of radius R, the magnetiza-
tion per unit volume of the surface sheath when
in the critical state M, is readily compared
with the magnetization per unit volume of the
surface sheath in its lowest energy state' M, .
One finds'

J' 2S(x H

lJ K $(RH [1 1j'2 (R )]
—1/2

c2
(16)

The eritieal current is small compared to the
inherent surface currents, because 7), 6/(,
Hp/Hc2, and [1--,'E'(R)] are all of order unity
and A. «R. Therefore, the induced current is
only a small perturbation on the inherent sur-
face currents and this is the justification for
using the unperturbed order parameter [cal-
culated from Eq. (2) with J =0] in Eq. (14a).

The possible existence of persistent surface
currents was previously suggested by Living-
ston and Schadler' in relation to the work of

From reference 2 one finds that E2(R)/Kpa(~)
is always larger than unity and, therefore,
M, /M, » 1 because 7), H02/HP, and 6/E are
of order unity and R» a. This justifies our
assumption that a, (R)» ao(R). For example,
for K =1, R =0.1 cm, Hc = 500 G, and Hc2/Hp = 1,
we obtain 4vM, =6.3 6 and M1/M, = 1.65x 10'
(with 7) =1).

When the superconducting surface sheath is
in the lowest energy state (Zc =0), two super-
currents Jgy and Jg2 of equal magnitude but
opposite direction flow near the surface. '~'

When one compares j Jsy j from reference 3
with the critical current (4m/c) Jc = 4vM I from
Eq. (14a), one obtains
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Chiou, Connell, and Seraphim, ' and by one of
the authors. ' Chiou, Connell, and Seraphim'
have observed for In-3.6 at.Pq Pb alloys (type I
superconductor; 0.417&v&0.707) a tail in the
magnetization curve which is diamagnetic for
increasing magnetic fields and paramagnetic
for decreasing magnetic fields. This is most
likely the superconducting sheath in the criti-
cal state although Chiou, Connell, and Sera-
phim' explained their results at that time as
"the usual filamentary superconductivity in
high magnetic fields. " The hysteresis of the
ma, gnetization near H~ is due to the critica, l
surfa, ce current. The bulk of the metal goes
into the diamagnetic state at an external field
which is smaller than H~ because the internal
field is enhanced due to the contribution of the
critical sheath current when the externa, l mag-
netic field is decreased. Unfortunately, no

quantitative comparison can be made because
neither the sample shape nor its size are given.

Abrikosov' has calculated the approximate
maximum transport current which can be passed
through the superconducting surface sheath
of a, semi-infinite haU space for ~ » 1 when

the current is parallel or perpendicular to the
magnetic field. He obtains a critical transport
current which is by one to tw'o orders of mag-
nitude larger tha. n what has been actually ob-
served. ' We believe that this discrepancy arises
mainly because in Abrikosov's calculation the
magnetic field energy, which is proportional
to the volume of the sample, was neglected.
Recent numerical calculations by Park' have
the same limitations.

In calcula. ting the critical current J~ we have
assumed in Eq. (3) that the sample is in ther-
modynamic equilibrium (FS-F~=0). Stable

current states exist' also for Es-I'g& 0 and
meta, stable states may also exist for Fs-I'~&0.
The latter are likely to occur when flux pinning

plays a dominant role. Experiments with rea-
sonably good surfaces show, however, that
the thermodynamic equilibrium state (FS-F~ = 0)
is favored tmaximum stable current; Eq. (14a)J,
probably because the superconducting surface
is in physical contact with the normal core of
the cylinder. Equation (3) (with FS-F~ w 0)
can be also solved (the same way as above)
when I g-I"g is an arbitrary constant.

A comprehensive account of the exact numeri-
cal work on the critical state of the supercon-
ducting surface sheath will be published else-
where.

We would like to thank J. D. Livingston for
bringing to our attention references 5 and 6.

"Based on xvork sponsored by the Research for Met-
allurgy and Materials Programs, Division of Research,
U. S. Atomic Energy Commission, under Contract
No. AT-(11-1)-QEN-8.

'V. L. Ginzburg and L. D. Landau, Zh. Eksperim. i
Teor. Fiz. 20, 1064 (1950).

2H. J. Fink and R. D. Kessinger, Phys. Rev. (to be
published) .

3H. J. Fink, Phys. Rev. Letters 14, 853 (1965).
4L. J. Barnes and H. J. Fink, to be published.
5J. D. Livingston and H. W. Schadler„Progr. Mat.

Sci. 12, 183 (1964).
6C. Chiou, R. A. Connell, and D. P. Seraphim, Phys.

Rev. 129, 1070 (1963).
A. A. Abrikosov, Zh. Eksperim. i Teor. Fiz. 47,

720 (1964) [translation: Soviet Phys. —JETP 20, 480
(1965)].

P. S. Svartz and R. R. Hart, Jr. , Phys. Rev. 137,
A818 (1965).

~J. G. Park, Phys. Rev. Letters 15, 352 (1965).


