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We hence have three equations [(4)-(6)] to de-
termine two unknowns, and thus our system
is overdetermined. %e overcome this difficul-
ty in the following way. We use Eq. (5) to de-
termine the value of the coupling constant which
leads to a zero for Rea; this occurs for

f' = 11.2.

With Eq. (4) this means that

M ' = 11.2v 2 x 10'M ',
N

or

M 1258M .
p

[There exists, of course, the question whether
the value of G chosen here is the appropriate
one. If the interaction of the neutral weak cur-
rent is reduced by a certain factor, then the
mass of the W should be higher, according
to Eq. (4).]

We then use Eq. (6) as a check on the value
obtained for f' from Eq. (5). This added con-
straint removes the usual flexibility of being
able to adjust coupling constants and masses,
which is found in most bootstrap calculations.
This gives

3 &(x)' (d/dx)D(x)

which predicts M~ = 1154M~, and gives us added
confidence in our calculation.

For bootstrapping experts we note that our
solution for n(x) does not differ greatly from
the input term b(x), and hence we can use the
determinantal method to evaluate D(x). We
did this as a check and obtained f' = 10, which
is close to the result of Eq. (7).

It is thus evident from the considerations
above that we can find a self-consistent solu-
tion for a W in the vv system. If this calcu-
lation is taken as a model for other processes
of leptonic interactions, it turns out that the
weak processes can be described by strong
coupling constants, and it is only the very high
mass of the intermediate vector boson that is
responsible for their effective weakness.
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%eisberger and Adler have independently
reported consistent calculations of the renor-
malization of the nonstrangeness-changing
axial-vector coupling constant' in beta decay.
The calculations are based upon the equal-time
commutation relations of the axial charges,
and the Goldberger-Treiman relation [partial-
ly conserved axial-vector current (PCAC)
hypothesis]. ' In this note the calculation of
reference 1 is generalized to the strangeness-
changing axial-vector coupling constant. The
renormalization of the axial-vector coupling

constant is related by a sum rule to off-the-
mass-shell K-nucleon total cross sections
and the pseudoscalar coupling constant of the
strange baryons to the K meson. Although
the parameters entering the calculation are
not completely without uncertainty, we feel
that it is worth doing the calculation to obtain
some limits on this renormalization. The sum
rule is very similar to that of reference 1 and
the result of the calculation can be stated as
follows:

0.73 s (I/Z )' [I --'Z '--,'Z '] & 0.98,
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where G~, Gy S, Gg0, and G~ S are the
unrenormalized strangeness-maintaining (hS
=0, At= ~) vector coupling constant, strange-
ness-changing (M = 1, &I = 2) vector coupling
constant, strangeness-maintaining axial-vec-
tor coupling constant, and strangeness-chang-
ing axial-vector coupling constant, respective-
ly. In Eq. (2), I+ and K+ denote the currents
that transform like ~P., +k, ) and &P.~+zX,) un-
der SU(3), respectively. Here Xa are the gen-
erators of SU(3).

(2) The space integrals of the time compo-
nents (charges) of the vector and axial-vector
currents generate at equal times the algebra
of SU(3)SSU(3). This point has been empha-
sized by Gell-Mann repeatedly. 4 %'e also as-
sume that the algebra is conserved even though
the currents themselves are not conserved.
The charges are defined by

F (t)=fd xV, (x, t)

F, (t) =,fd xA, (x, t). (3)

1s
One of the commutators that we have assumed

[F, (t), F~ (t)j=F +F
The quantities on the right-hand side of Eq. (4)

where ZpA and Zpg are the renormalization
constants for the proton-lambda and proton-
sigma axial-vector coupling constants. The
two different limits in Eq. (1) correspond to
two distinct estimates of the gpAK strong coup-
ling constant. The renormalization is in the
opposite direction from that in reference 1 since
the K P total cross section is much larger

+
than the K P tota. l cross section over much
of the range [see Eqs. (8) and (8') below].
Finally, if the Cabibbo form of universality'
is assumed and the SU(3) structure of the to-
tal hadronic weak current is taken into account,
we can determine the reduced matrix elements
of the currents related to weak-interaction
experiments by the Cabibbo theory.

The calculation is based upon the following
assumptions:

(1) The hadronic current responsible for the
leptonic decays has the following form:

0 I+ ~ OS

V V

are the charge and hypercharge which are con-
served by the strong and electromagnetic in-
teractions and are hence independent of time. '

(3) Next we assume the partial conservation
of the axial-vector current'» ' generalized
to the strangeness-changing current:

8 A =(M /2f )y (5)

In Eq. (5), a = 4, 5, 6, 7 of SU(3}, MK is the K
mass, p is the renormalized K-meson field,
and fK is a parameter which is related to the
K —p. + v decay rate.

The matrix elements of the currents in Eq. (2)
give us immediately the renormalization con-
stants, for example,

(B'(P') IA IB(P))

=~E'(p)E(p) G ~ B (p )yxy5UB(P) (6)

The renormalized coupling constant is defined
by Eq. (6). Here the states IB(P)) and IB'(P))
are physical one-baryon states with masses
Mg and Mg~. The constant on the right-hand
side of Eq. (5), which can be evaluated by stan-
dard methods, 4y ' is given by

M M

(7)

In Eq. (7), the Goldberger-Treiman relation,
g&I3i& is the renormalized pseudoscalar K
—B+B' coupling constant, and FBBiK(0) is
the invariant form factor evaluated at zero
K mass [FBB~K(MK ) = Ij.

Next some details of the calculation are given.
Following the methods of %eisberger and Ad-
ler' and Fubini and Furlan, ' we compute the
matrix elements of Eq. (4) with physical one-
proton states. The contribution of the one-
baryon states (Z' and A' in this case) is sep-
arated from the contribution of the many-par-
ti:cle states, and the latter are expressed in
terms of K P total cross sections off the mass
shell. Making use of the SU(3) structure of
the current in Eq. (2), we obtain the sum rule

( 1
F ~

= I+-j -
I

&Z„F& 3 i'
fM +M ) ~ 1 ( D)2 1

+~
~

I -Is+- ~
—I,Eg~i 6L, F14.
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where

I= 4m —[A (v, 0) -A (v, 0) l
v(M +M ) v

m A

—,q (v)[o (v)-o (v)].
dv +

p v Jt

In Eq. (8') the variable v is related to the lab-
oratory momentum of the incident K meson

qL by v = (q&'+ Mff ') '+ M&'/2M'„vt corres-
ponds to the threshold for elastic KP scatter-
ing; and v(Mv+M~) corresponds to the thresh-
old for the lowest many-particle state that
has the same quantum numbers as the K P
system (Mp = proton mass, MA = lambda mass).
Also, A is the forward-scattering absorptive
part of the K P amplitude in the unphysical
region, and o is the total cross section for
K P scattering of zero-mass K mesons. ' We
will assume without justification that the an-
alytic continuation off the mass shell is harm-
less, and we can use as in reference 1 the
method of Ferrari and Selleri' and cancel the
factor of [Kp~(0)]'. We hope that the off-the-
shell corrections amount to only a few percent
as reported by Adler. '

From standard SU(3) analysis the quantity
we are computing can be related to the physi-
cal renormalized coupling constants entering
this calculation by

G = 6 (3+D/F)ZA GA

G = -2 (-1+D/F )Z G (9)

There are two uncertainties in the sum rule
which make an unambiguous determination of
the renormalization difficult. They are the
following: the lack of knowledge of the coup-
ling gpAK and the value of the absorptive part

(v, 0) below threshold.
Regarding the first difficulty, we can relate

gp~ to g~~~ if we assume SU(3) and a value
for the D/F ratio for pseudoscalar couplings
which hereafter we will denote (D/F)p. This
D/F ratio (D/F)I& is not too well known. If
we assume a value that agrees with the deter-
mination from bootstraps, ~ (D/F)F = 3, we ob-
tain gp~ =g„~)V (0.4), and if we assume a
value of (D/F)F~ that agrees with the determi-
nation from the weak interaction, '0 (D/F) p = 1.7,

we obtain g~~'-g„)V~ (0.5). In all of the fol-
lowing g„~~' = (4m)(14.6).

Regarding the second difficulty, the value
of A (v, 0) is obtained from the Dalitz-Tuan
analysis of K-nucleon scattering in terms of
a complex scattering length" which fits the
scattering data in the physical region. We
use the values of the scattering length as ob-
tained by Kim and by Ross and Humphrey. "
The contribution of the unphysical region is
approximately 20% of the final result. Thus
uncertainties of as large as 20% in this con-
tribution will not be too important. Since the
K P cross section is large and climbing in
the low-energy region, and the K P cross
section small and constant, it is safe to ne-
glectA+(v, 0) in Eq. (8').

The K P cross sections above threshold are
well known and are given by several authors. '3

In the asymptotic region qL, & 4 BeV/c the cross-
section difference is fit by a Hegge-pole mod-
el." The breakdown of the final result is as
follows:

I=[(I =13.04)+(I =29.6)+(I =16.80)] mb, (10)

where I& is the contribution to the integral
of Eq. (8') below threshold, I& is the contri-
bution above threshold but not asymptotic (q&
& 4 BeV/c), and IA is the contribution from
the asymptotic region. Also, the Y, ~(1385) is
put in as a bound state; the residue of this pole
is related to that of the N*(1238) isobar by
SU(3), and its contribution is shown to be neg-
ligible (s1%). Because of the uncertainties
in the problem, we can regard the final re-
sult as an estimate.

The facts that the quantity &a =0 -o+ is
always positive and large and the quantity

gf ~ is small for reasonable (D/F)p conspire
to produce a large renormalization in the di-
rection opposite to that in reference 1, and
using Eq. (9) in Eqs. (8) and (8') we obtain
Eq. (1).

If we make the Cabibbo assumption for the
current" of Eq. (2), then

G =G =G cose, G =G =G sin6, (11)
0 0 OS OS

where 8 is the Cabibbo angle. In the axial-
vector contribution there are three quantities
related to weak-interaction experiments:
D, and F. The latter two are the reduced ma-
trix elements of the currents in Eq. (2) and
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correspond exactly to Our Zga and Zg+.
Using SU(3) analysis the Adler-Weisberger

result can be stated:

1.20= (1+D/F)Z =Z +Z
D F

(12)

Taking the lower limit in our result Eq. (1)
(gpAff'=0. 5g~~~') and using Eqs. (9) and

(12), we obtain

Z =0.45 and Z =0.75,
D

(13)

which agree well with the solution A of Willis
et al. ' mho report Zg =0.436 and Zg =0.742.
The precise numerical values are not to be
taken too seriously since the calculation is
only an estimate.
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The simplest explanation of the experimen-
tal result of Christenson, Cronin, Fitch, and
Turlay' is that CP invariance is violated in
weak interactions. Kith this in mind, we re-
investigate the charged vector-meson theory
of Lee and Yang. '~ %e shall restrict ourselves
to the case &=0, for the reasons given by Bern-
stein and Lee. Furthermore, we assume the
validity of the principle of minimal electromag-
netic interaction, in the form recently given
by Lee.' More explicitly, we assume that the
electromagnetic coupling constant appear s in
the combination 8& only.

In the absence of electromagnetic interactions,
the Lagrangian density for a free vector-me-

son field is

1(ay By ) (ay By

-2(ax B. ] (Bx ax )

By the principle of minimal electromagnetic
interaction, we replace B/Bx& by B& in (1) to
get the Lagrangian density

Z(e, m) = —2(BA /Bx )(aA /Bx )
V P. v

(2)

In the $-limiting formalism of Lee and Yang, '
the following Lagrangian density is considered
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