
VOLUME 15, NUMBER 17 PHYSICAL REVIEW LETTERS 25 OcToBER 1965
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At the present time the universe is observed
to be expanding. If we assume that there is no
creation of matter, this indicates that the den-
sity must have been higher in the past. The
question then arises, was there some time in
the past when the density was infinite (i.e. , was
there a singularity of space-time), or did the
universe contract until it reached a finite max-
imum density and then expand again'P This was
partly answered by Robertson' who showed that
if the universe was spatially homogeneous and
isotropie, its metric could be written

ds' = dt'-R'(t) [dr'/(1-Er') + r'(d 8'+ sin'ed'') ], (1)

K=-1, 0, or +1.

Robertson showed that provided the matter has
normal properties and the Einstein equations
without cosmological constant held,

R -&g R =-T1

ab ab ab'

then there would be a physical singularity in
any universe whose metric had the form (1).
This form restricts the flow of the matter to
be acceleration-, shear-, and rotation-free.
It has been suggested' that if these restrictions
were dropped there might not be a physical
singularity (although there might still be a co-
ordinate singularity). However, it has been
shown that there will still be a physical singu-
larity if the flow of the matter is acceleration-
and rotation-frees~ or if the universe is homo-
geneous but not isotropic' (in which ease there
could be acceleration, shear, and rotation).
All of these cases place some restriction or
exact symmetry on the flow, homever, and it
has been claimed that in the absence of such
restrictions or exact symmetries there will
not be a physical singularity. That is, if we
have a model that is a small perturbation of
one of these restricted models, then the per-
turbations will grow as we go back in time and
will prevent the occurrence of a physical sin-
gularity. This claim has already been proved
false by Penrose' for the case of a collapsing
star. Using similar methods it will be shown
that this claim is also false for a class of uni-
verse models.

Consider universes of the form (1) where
K= -1. In these the surfaces of homogeneity
0 (t = const) have constant negative curvature.
They may or may not be compact, but if they
are compact, they will not be simply connected.
However, the covering space will be noncom-
pact. Since a singularity in the covering space
implies a singularity in the original space, it
will be sufficient to consider the case mhere
the surfaces of homogeneity are noneompact. '

In one of the three-surfaces H with future
directed unit normal W (1,0, 0, 0), consider
a two-sphere 8 (r = const, t = const). Let q
be the outward directed unit normal to S in H.
Consider the two families of past directed null
geodesics mith tangent vector l, that intersect
S orthogonally. Then at S, l =-V +q . Intro-
duce two unit spacelike vectors s and t or-
thogonal to each other and to V and q . Form
the complex combinations

a -1/2 a . a a -1/2 a, a
m =2 s +it, m =2 s it-

Then the convergence of the null geodesics is
represented by the quantity'

a bp=l m rn .a;b

Thus at S,

a bp=( V +q )mma;b a;b

2(1-ttH}"2
R xR

But 3(K+A')/R' = p, , where p is the density of
matter. " Ther efore,

p = (2/R)[(-,' gR'-K)"'+ (1-Kr')"'/rj.
If p. &0 and K=0 or -1, p can be made positive
at S for both families of null geodesics by tak-
ing x large enough. Thus both families of null
geodesics normal to S will be converging. There-
fore, in the language of Penrose, ' S mill be a
closed trapped surface. Penrose has shomn
that either a physical singularity must occur
or space-time is incomplete if there is a closed
trapped surface, and (a) the energy density
Tabes mb in the rest frame of any observer with
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velocity su~ is non-negative definite; (b) the
null cones form two separate systems, past
and future (this means that one can globally
assign a, time direction); (c) there is a noncom-
pact Cauchy surface; that is, there exists a
noncompact spacelike surface that intersects
every timelike and null line once and once only.
These conditions are satisfied by a universe
of form (1) with K=0 or -1 and filled with nor-
mal matter. However, at S, p is positive by
a finite amount. Therefore any perturbation
of (1) which is not too large will leave p posi-
tive, and so there will still be a closed trapped
surface and hence a physical singularity. Thus
a universe that is similar on a large scale to
the form (1) but has no exact local symmetries
will have a singularity. Local irregularities
cannot prevent it.

The presence of matter gives a unique time-
like congruence (the flow lines) which may be
defined as the timelike eigenvector of the Ricci
tensor. Using this it is possible to replace con-
dition (c) by the weaker conditions (d) and (e):
(d) The covering space has no closed timelike
lines; (e) there exists a complete connected
noncornpaet spacelike three-surface on which
the density has a positive lower bound and the
scalar product of its unit normal and the veloc-

ity vector of the flow lines has an upper bound.

This removes the possibility that a singularity
might be avoided by there being regions of space-
time for which H is not a Cauchy surface.

The author and Dr. G. F. R. Ellis are working
on a proof of the occurrence of singularities
in closed universes. This and an extension of
the above results will be published shortly.

The author wishes to thank Dr. R. Penrose
for his help and advice.

H. P. Robertson, Rev. Mod. Phys. 5, 62 (1935).
20. Heckman, in Proceedings of the International As-

tronomical Union Symposium on Problems of Extra
Galactic Research, Santa Barbara, California, 10-12
August 1961, edited by G. C. McVittie (The Macmillan

Company, New York, 1961).
3A. Raychaudhure, Phys. Rev. 98, 1123 (1955).
4A. Komar, Phys. Rev. 104, 544 (1956).
~S. %. Hawking and G. F. R. Ellis, Phys. Letters 17,

247 (1965).
6E. M. Lifshitz and I. M. Khalatnikov, Advan. Phys.

12, 185 (1963).
R. Penrose, Phys. Rev. Letters 14, 57 (1965).
The author is indebted to Dr. Marcus for this point.

~E. Newman and R. Penrose, J. Math. Phys. 3, 566
(1962).

H. Bondi, Cosmology (Cambridge University Press,
Cambridge, England, 1961)

DIRECT DETECTION OF T%0-PHOTON EMISSION FROM THE METASTABLE STATE
OF SINGLY IONIZED HELIUM*

M. Lipeles, R. Novick, g and N. Tolk

Columbia Radiation Laboratory, Columbia University, New York, New York
(Received 1 October 1965)

In this Letter we report on the direct detec-
tion by coincidence counting techniques of the
two-photon decay of the metastable 2'S», state
of singly ionized helium. The metastability
of the 2S state of hydrogenic atoms has been
the subject of many theoretical studies. ' The
2S states of H and He+ are known to be meta-
stable, and the lifetimes have been shown to
be greater than 2.4x10 sec and 1 x10 ' sec,
respectively. ~ The present theoretical view
is that an unperturbed metastable hydrogenic
atom will decay by two-photon emission at a
rate given by y =8.226 Z sec '. The decay
rate for all other decay modes considered so
far is orders of magnitude slower than the two-
photon rate. 4 Several attempts have been made
to detect similar two-photon decays in excited

nuclei. In no case has conclusive evidence been
obtained for the existence of such transitions. '
Extensive observations have been made of mul-
tiple-photon processes with intense laser fields. '
Multiple-photon-induced absorption and emis-
sion processes in the rf region of the spectrum
have been studied in considerable detail by mo-
lecular beams and optical pumping techniques. '

The present experiment was designed to de-
tect the decay in flight of a slow (12-eV) beam
of metasteble helium ions. Ionized helium was
chosen in preference to hydrogen because the
two-photon lifetime and the Stark quenching
rate are each smaller by a factor of 64 in the
helium. In addition, standard ion-beam tech-
niques could be employed to focus and control
the beam. In the case of the present beam,


