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to the relatively large concentration of impur-
ities and changes in the force constants near
them.

The resonant mode occurs at approximately
one-half of the maximum phonon energy of 42
meV in Cr. From Eq. (2) and the phonon dis-
persion curves5 it should be possible to calcu-
late the frequency shifts to compare with ex-
periment. We have observed evidence for reso-
nant modes at approximately the same frequency
in other branches of the phonon spectrum, and
we are extending our preliminary experiments
to make a detailed study of these.

It is a pleasure to thank Dr. F. A. Schmidt
for his great kindness and skill in preparing
the crystals used in these experiments.

*Work was performed partly in the Ames Laboratory

of the U. S. Atomic Energy Commission. Contribution
No. 1759.
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In this Letter we describe a nonperturbative
treatment of a hydrogenic two-body system in
the presence of a strong electric field. Our
major results are (1) the demonstration that
asymptotically for large negative energies the
presence of the Coulomb interaction does not
materially alter the optical absorption in an
electric field alone, and (2) the calculation of
the widths and energies of the low-energy ex-
citon peaks as a function of the electric field
strength. A number of speculations concern-
ing the above results have appeared in the lit-
erature. '~' %'e present their first quantitative
calculation. Such a calculation is needed to
distinguish structure due to excitons from that
due to critical points in electric-field-modu-
lated optical reflectance'~' and transmission~
data. In the course of our analysis, we perform
the first exact solution of Schrodinger's equa-
tion for a potential, other than a square bar-
rier, which exhibits bound states in the contin-
uum.

If the interaction between the optical field
and the solid is treated in first-order pertur-
bation theory, then in the absence of other ex-
ternal fields it has been shown by Elliot' that
the calculation of the optical-absorption tran-

sition probability reduces to evaluating the ma-
trix element

M= )~ +- - ' I (k, k, $, q), (la)

I,(k, k, (, q)jj' e'

d vg- . re $v'- r, 1b
me'

in which q is the wave vector and $ the polar-
ization vector of the light wave; ke and kg are
the wave vectors of the electron and hole from
bands j and j', respectively; the gk j are their

7

one-electron wave functions, and 4 is the Fouri-
er transform of an exciton wave function. The
imposition of an external electric field alters
both the expansion coefficients, 4, and the one-
electron wave functions, g. The effects of the
electric field on pk j, as reflected in the inte-
gral (lb), are thought to be small. ' As the in-
tegral is customarily treated as a variable
parameter used to fit the experimental data, '
we do not discuss it further.

For direct, allowed transitions between two
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parabolic bands, ' we must evaluate (pE(0), with

yE(r) satisfying

[-,'a-hz+r '+E](p (r) =0, (2

8= ie i+a '((/&'8
=1.S4x10 '0(m /p)'z 3F(V/cm),

e 0

E = (8(u-E )/()I'/i(a '),
g 8

(2b)

(2c)

yE(r) =f1(t')f2((i)e /(((/2)

d f ldf . I . m n, +-,'(1+ Im I)
2 2

E

dp . p. dp. 4 4p. p.
L Z Z Z

(-1) n hp.
f.=0, (4a)

n = (-2Z)-(",

n, +n, +1 =n- Im i,

(4b)

(4c)

p, = t/n; p, = ()/n (4d)

From the indicial equation we find that for the
wave function not to vanish at the origin, we
need to consider only m =0. Although Eqs. (4)
cannot be reduced to a two-term recursion re-
lation, they were solved long ago in the weak-
field limit (8& 10 ') by a variant of perturba-
tion theory and the results applied to the de-
scription of Stark shifts in atomic hydrogen. '
However, in a discussion of electric field ef-
fects on exciton levels in semiconductors (e.g.
GaAs), one must recognize that even modest
fields (I =10 V/cm) correspond to values of
g (g=9x10 ') far in excess of those ((((&10 ')
associated with third-order Stark shifts in hy-
drogen. Therefore, such a discussion requires
an approach which a priori incorporates the
influence of autoionization on even the lowest
energy eigenfunctions (4a). We propose as a
suitable starting point a model potential con-
sisting of the Coulomb potential near the ori-
gin and the electric field far from the origin.

in which E is the external field strength, aB
is the Bohr radius, c, is the static dielectric
constant, p is the hydrogenic (electron-hole)
reduced mass, and Fg is the zero-field ener-
gy gap. It is well known that Eq. (2a) is sep-
arable in parabolic coordinates []=r+z, () =r-z,
y = tan '(y/z)], with the result' for 8 & 0

We obtain this potential by introducing a cut-
off distance, xo, equal to that at which the sepa-
rate contributions to the p, effective potential
are equal (when n, =n, = 0):

p
(0) p (0) x/n

,'-2$-', -8-' = 0.

(5a)

(5b)

Thus we interpret a single 1 = 0, m = 0 exciton
line of intensity m' 'n ' in spherical coordinates
as the confluence of n lines each of intensity

'n 4 in parabolic coordinates. When the elec-
tric field is applied, the lines not only split
up into n components (Stark effect), but also
the energy spectrum becomes continuous. Each
value of n((i) gives rise to a "series" of quasi-
stationary levels, one level being associated

The corrections to Stark shifts obtained from
the model are small if n'$»1. Thus, it is ap-
plicable in the interval 0&E&-P". In particu-
lar, it describes the entire energy spectrum
when 8~ 1 and the large-n quasistationary states
for any value of 8 (the WKBJ treatment' of these
states is rendered inapplicable by the boundary
conditions). We next derive the absorption bound-
ary-value problem and present some results
obtained by use of our strong-field model po-
tential.

In the presence of an electric field, Eqs. (4)
have a continuous energy spectrum of both posi-
tive- and negative-energy eigenvalues and a
discrete spectrum of eigenvalues for n, . The
eigenvalues of n, are obtained from the solu-
tion to a transcendental equation and are labeled
by the integral index i & 0 such that n, (() &n, (&)

is denoted by i &j. The boundary conditions
on the n, quantum numbers for the optical-ab-
sorption problem may be defined by consider-
ing the zero-field limit in which both n, and n,
are non-negative integers. ' The parabolic-
coordinate solution for the Coulomb field alone
is well knowns and can be related to the spheri-
cal-coordinate solution via the addition theo-
rem for Laguerre polynomials. ' If Rnfm(r)
is the normalized solution in spherical coor-
dinates and ()n n n m(r) is the normalized

JP 2P t
solution in parabolic coordinates, we find

n 1

IR 00(0)l'= —
I Q g 0(0)l'
s=0
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with each zero-field level for no&i. (We now

denote the zero-field quantum number n by no
because in the presence of the field n becomes
a continuous variable n ~0.) Furthermore,
eacn value of n, (') contributes to the absorption
for an arbitrary value of the energy (n).

Writing the m =0 eigenfunctions (3) as

(7a)

10

I0

I

I
I

we find that the strength function for the opti-
cal-absorption problem becomes

IO

ly (0)I = Q I(p (z)
(0)I2

0 1

1 & 'IX„Z(h)I'dt =1,

q dan=5 E'-E,

(7b)

(7c)

(7d)
L

in which we have neglected nondivergent terms
in the normalization integral. For weak fields,
near the energy of one of the quasistationary
levels, one term in (7b) is much larger than
the sum of the remaining terms, and we find
an absorption peak analogous to the zero-field
exciton lines.

The details of computing y will be published
later. ' Here we merely note that in the limit
n -0, we can use integral values for n, (~) and
explicitly evaluate the sum in (7b) in terms of
asymptotic forms of Kummer" functions and
Airy functions'2 to obtain

iy (0)I' = wA2exp — 3@[1+cn+c n'n-0 3n'8

+ ~ ~ ~ ]+c ln(n),

w&' = (2g)"'/(I & IF)"5"'.
(8a)

(8b)

The c,n terms result from the dense spectrum
of large n, (~) values, and c,n' terms from the
isolated low-lying n, ( ) values. All of the n, (~)

values contribute to the coin(n) term. The im-
portant aspect of (8) is that the leading term
in the brackets is unity so that the Coulomb
interaction causes no asymptotic shift of the
Franz-Keldysh band edge. This conclusion is
independent of choice of xo [provided xa& (n'h) '],
although the values of the c; depend on xo.

Near the zero-field band gap, the electric
field causes two major modifications in the
absorption spectrum. First, it splits (for no
&1), shifts, and broadens the exciton peaks
and eventually makes them disappear. Second,
it lowers the energy at which an electron-hole
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pair no longer needs to tunnel through a poten-
tial barrier in order to reach r =0. This latter
result causes the absorption to reach its "con-
tinuum" edge at S~ & E& in the presence of the
electric field. " We calculate a dimensionless
quantity nR(n, nl) = I rp I2$ "'which is propor-
tional to the appropriate contribution to the
absorption coefficient. '~ Figure 1 illustrates
the line shape near the lowest energy exciton
peak. The shift of the peak to higher energies
is a consequence of the interaction of the oscil-
latory states outside the barrier with the quasi-
stationary state inside the barrier. It is re-
duced (and for small h reversed) by corrections
to the model. The lowering of the "continuum*'
edge is reflected in the rise in the wings of
the peak in cyR as 8 increases.

We conclude that although the electric field

FIG. 1. n&(n, n1 ') as a function of the dimension-
less energy parameter E. Energy is measured in units
of Eo =h /pea . For GaAs, E p

= 11 3 meV using the
parameters of reference 7. Contributions to n& from
a&{n,n1 '), i & 0, are not discernible on the scale used
in the figure.
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does not alter the asymptotic edge, "there is
a shift to lower photon energies of the apparent
continuum absorption coupled with the disap-
pearance of all exciton peaks at S& —,'. Published
GaAs absorption data" have been taken at tem-
peratures which are too high to observe these
effects. Preliminary data at liquid-nitrogen
temperature" confirm the prediction of the
shift in the continuum absorption in GaAs. A

description of the experiments' in Cu,O re-
quires the selection of m = 1 in Eqs. (4). Our
numerical calculations have not yet been ex-
tended to include this case.

The author is indebted to Mr. M. AUerieff
for assistance in programming, Dr. M. Gar-
finkel and Dr. %. Engeler for a discussion of
their data prior to publication, and Dr. G. D.
Mahan for stimulating discussions.
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Recent calculations of the spontaneous mag-
netization and susceptibility of theoretical ferro-
magnets emphasize the importance of the re-
gion around the Curie point in analyzing spe-
cific models. The magnetization near T~ is
generally described by the equation

M = constx(l-T/T )

and a similar equation with exponent y is used
for the susceptibility. Numerical approxima-
tions of infinite series expansions yield P
=0.31"' and y =-5/4'~' for three-dimension-
al Ising ferromagnets, and y = —~3' ' for the
Heisenberg model. These results, which are

relatively insensitive to the details of lattice
structure, spin, and range of interaction, dif-
fer from the molecular-field model values P

l= ~ and y=-i.
In measurements of the insulating ferromag-

net EuS, Heller and Benedek' found that the
zero-field resonant frequency of the Eu nuclei
followed a &-power law (0.33 a 0.015) over the
range 0.9 & T/Tc & 0.99. Experimental values
for y of metals appear to favor the Heisenberg
model: for Fe, y = -1.37 + 0.04' and -1.33 8;

for Ni, y = -2.35 + 0.02 ' and -1.29 + 0.03 '; and
for Co, y = -1.21 + 0.04." Direct measurements
of the spontaneous magnetization of metallic
ferromagnets in the critical region have not


