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at maximum compression, while the other sym-
bols have the meaning and numerical values
given in reference 2.

Noting that

f cos'tdf = 1.72,
0

we find for the dissipation the value 8.38&10"
&&[) ]' erg g

' sec ', or 1.01x10"[f ]' erg
sec ' for a neutron star of mass 1.2x10" g.
As a consequence of the high exponential, this
dissipation is very large in comparison with
the energy lost in the exponential decay, 2.3
x10"[b'av]' erg sec ', until b'av is reduced to
(2.3x 10"/1.01x 10")"'=0.078; after that it
becomes quite negligible. This means that
during the first few days after the outburst,
the reaction just described will reduce the vi-
brational energy to the value ~(I'--,)&x0.078'
=10.1x 10 ' erg; subsequently, the mechanism
responsible for the exponential decay will dom-
inate. The agreement between the theoretical
value 10.1x10 erg and the value 4x10 erg
deduced above from observation could be im-
proved by taking into account the temperature
dependence of the dissipation of vibrational en-
ergy be beta reactions.

The probable mechanism by which the vibra-
tional energy is converted into visible light
will be described in this Letter only very brief-
ly. An outgoing shock wave accompanying each

vibration' will transfer energy to the surface
of the star. Here, the energy will be dissipa-
ted and emitted in the form of thermal radia-
tion consisting of hard x rays. These x rays
will be absorbed by the expanding envelope of
the supernova and re-emitted in the visible
region. The ratio of the period of vibration
of the neutron star (which is less than 10
sec) to the half-value time t», of the luminos-

ity is about 10 ", therefore the observed ex-
ponential decay would be accounted for by as-
suming that the coefficient of reflection at the
surface of the star differs from unity by about
10-".
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LORENTZ-COVARIANT GRAVITATIONAL ENERGY-MOMENTUM LINKAGES
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(Received 29 June 1965)

This Letter presents a gravitational energy-
momentum expression with the transformation
properties of a Lorentz free vector in asymp-
totically flat but radiative spaces. This expres-
sion and its transformation properties apply
to finite regions as well as to the entire space.

In the Bondi-van der Burg-Metzner' formula-
tion of the characteristic initial-value problem,
certain of the field equations need only be ap-
plied on a world tube. For world tubes of to-
pology S'xE', we have cast these equations
in the form of conservation conditions

E (z )-E (z ) = f z ds,
2 ~ 1 I'

where

o [u;P)
;ff

( , J3) 0 , 8
(3)

Here Z, and Z, represent spacelike slices of
the world tube with topologies S', 1 is the por-
tion of the world tube bounded by Z~ and Z2,
Tp is the energy-momentum tensor of the
coupled fields, R is the Ricci scalar, and $~
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In this case, the $ linkage is a constant func-
tional of Z in empty space regions. As an ex-
ample, consider the charged Kerr metric, ~

which describes a rotating ring of charge e,
mass m, and spin ma'.

ds ' = (1+ W)du'+ 2dudr-a sin~8(Wdu + dr)dip

-R'd8'-sin'8(r '+a'+ ag„)dy',
where

R' = r'+a' cos'8, W= (e'-2mr)/R'.

This metric possesses a tirgelike translation-
al symmetry and a rotational symmetry. The
corresponding linkages are

e' e'(r'+a'), &a)Z(r) =m- ——,tan-'~ —(,2r 2ar2 (rj ' (5a)

L(r) =ma+ (r'-a')-
2 2 tan 'I —I, (5b

e' » e'(r '+a2)', t'a l
4ar 4a'r' (r j '

where E(r) is the energy linkage and L(r) the

is an arbitrary vector field. Brackets and
parentheses denote antisymmetrization and
symmetrization, respectively. Equation (1)
is the integral form of a covariant conserva-
tion law previously considered by Komar. '
In order to interpret the scalar functional Kg(Z)
physically, we associate the vector field $&
with the descriptor of an infinitesimal coor-
dinate transformation. The ability to identify
a particular descriptor with, say, a time trans-
lation would then correlate the corresponding
functional with energy. To avoid the specifica-
tion of any preferred spacelike three-volume
in which we couM say the energy resides, we
will interpret this functional as the energy link-
age through Z. Linkage' here is meant in its
topological sense as the four-dimensional ana-
log of the three-dimensional concept of a tra-
jectory passing through a closed loop. The
energy linkage thus represents the total ener-
gy passing in time through Z. For an arbitrary
descriptor field we will refer to the correspond-
ing functional as the f linkage.

To check the reasonableness of these inter-
pretations we first need a means of geometri-
cally selecting descriptor fields. One natural
way is to utilize the symmetries or asymptotic
symmetries of the space. Consider the case
of a global symmetry which provides a Killing
vector field satisfying

(u; v)

k =' k (6)

uniquely determines $u on the null hypersur-
face in terms of its value at Z+. There is an
intimate connection between this propagation
law and the Bondi coordinate conditions. ' De-
scriptors of global isometrics automatically
satisfy Eq. (6) everywhere

Using Eq. (6) we can now geometrically de-
fine a $ linkage through Z for each asymptotic

angular-momentum linkage through a sphere
of radius r linked by the ring. The leading terms
in Eqs. (5a) and (5b) describe the total linkages
through a sphere at infinity. The remaining
terms describe flux contributions due to the
Maxwell stress tensor. For a closed two-sur-
face not linked by the rotating ring, only the
electromagnetic field terms contribute to the
linkages. Newman and Janis' have interpreted
the case e =0 in a similar way.

Although global symmetries do not exist in
general, for certain asymptotically flat space-
times there exist asymptotic symmetries, '&~

which describe the isometrics of future null
infinity &t and past null infinity &) . Here we
will concentrate on the properties of g". Us-
ing the conformal techniques of Penrose, ' we
treat g+ as a regular hypersurface with topol-
ogy S xE . Coordinates x+ and descriptox
fields go(x) on g+ then take on a precise mean-
ing.

The Bondi-Metzner-Sachs asymptotic sym-
metry group'&' (BMS group) is an infinite-dimen-
sional Lie group which contains a unique four-
dimensional normal translation subgroup and
an infinite-dimensional normal supertransla-
tion subgroup whose factor group is isomorphic
to the orthochronous homogeneous Lorentz group.
Let g~ (x) (Q = 0, 1, 2, ~ ~ ~ ) be a basis for BMS
descrzptors defined on J+.

There is no geometrically intrinsic way of
propagating descriptors on g+ throughout space
time. A two-surface Z, however, does deter-
mine a geometrical prescription for uniquely
propagating descriptors from g+ to Z. Each
point on Z geometrically determines two null
directions which are orthogonal to the local
two-space. The entirety of outward null direc-
tions on Z defines a null hypersurface which,
for simple topologies, emanates out from Z
and intersects g+ in a two-space Z+ (see Fig. 1).
Let k~ denote a vector field normal to this null
hypersurface; then the propagation law
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In order to obtain a conservation law for L~(Z)
analogous to Eq. (1), we must define the flux

I

I

I

I

jX
I

FIG. 1. ln this three-dimensional drawing, Z ap-
pears as a closed loop. The null rays k~ generate a
null hypersurface extending from Z to X+. The dotted
lines depict trajectories linking X and Z

symmetry rj ~. The total linkage through cor-
responding to a time translation, however,
does not yield the total energy of a radiating
system as defined by Bondi, van der Burg,
and Metzner. ' Instead it gives a total energy
linkage which need not be monotonically small-
er for infinite spheres Z+ at later times. We
have been able to remove this shortcoming in
the following way. Represent by the vectors
kj and mI', respectively, the outgoing and in-
coming null directions which Z picks out at
each point on its surface. Normalize these
vectors by

across a world tube 1" connecting Z, and Z, .
This entails defining the quantity

along the world tube (only in-surface deriva
tives of this quantity are necessary to calculate
the flux I:&' across I'). We can accomplish this
by assigning a continuous slicing of I' into a
family of closed two-surfaces whose first mem-
ber is Z, and whose last member is Z, . Each
slice then defines a descriptor field $& along
its out oing null hypersurface and a bivector
k[&m~ . There are, however, an infinity of
acceptable slicings. One natural choice is the
slicing induced on I by a geodesically parallel
slicing of g+ from Z, + to Z, + (see Fig. 2). While
any choice of slicing does lead to the same total
integrated flux across I, the lack of a unique
choice presents difficulties in defining a local
flux across I . The local flux across a null
hypersurface turns out to be more fundamen-
tal. The total flux across I' equals the sum

Although Eq. (7) does not uniquely determine
the extensions of k~ and m ~, it does complete-
ly fix bilinear products such as the bivector

We now redefine the $ linkage to be

L (Z) =JC (Z)+$ 8 dS
Z V~

(8)

This linkage L~(Z) does yield the correct total
energy for radiative spaces. The added bivec-
tor term has the further virtue of guaranteeing
that the evaluation of L~(Z) requires only those
derivatives of $~ which lie in the outgoing null
hypersurface. This is crucial since the propa-
gation law determined by Z defines $& only
on this null hypersurface. Note that for descrip-
tors of global isometrics this problem does
not arise, and the added bivector term vanishes.

FIG. 2. The dotted lines illustrate how geodetically
parallel slices on/+ induce a family of slices on the
timelike world tube I'. The total Qux I' across the
surface of I is equal to the sum of the fluxes across
the null surfaces N&, N2, and N+.
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of the fluxes across the three null hypersur-
faces N„N„and N+ shown in Fig. 2 (g is a
null hypersurface'). We define rn & along N,
by

rn k =1, m m =m k =0.

This determines m ~ up to a null rotation. The
local flux across N, then becomes

where Y~ are the spherical functions

Y, =1, Y, =sinHcosy,

Y, = sin8 since', Y, = cos6.

Under a BMS transformation,

ey"
7) "(y)=& n, (y) =L, n&"(y),

(i6)

(17)

([Pi ] ((P g )
jp

(12)

and is invariant under null rotations of I~ be-
cause the surface element lies in the k& direc-
tion. %'e can similarly obtain geometrically
defined local fluxes across N, and N+. In this
way the use of null hypersurfaces leads to a
flux conservation law for L~ which does not
involve an assignment of slices.

All the total linkages L@(Z+) corresponding
to asymptotic symmetries q

~ are mathemati-
cally defined finite quantities. In particular,
choose a basis q ~(x) (a =0, 1, 2, S) for the trans-
lational descriptors on g+ representing infini-
tesimal translations along four orthogonal axes,
with g, ~ representing a timelike translation.
Label the corresponding energy-momentum
linkage by P (Z). In a neighborhood of g+, we
then find as a consequence of the outgoing ra-
diation condition'&'

P (Z) =P (Z')+O(r-'), (Is)

where r is a luminosity distance along the null
hypersurface from Z to Z+. This equation con-
firms the absence of incoming fluxes of ener-
gy and momentum which could contribute to
P~(Z) near g+.

Up to now we have purposely refrained from
the introduction of any special coordinate sys-
tem in order to emphasize the geometrical na-
ture of our results. There is, however, no
unique choice of orthogonal basis q &(x) witha
which to define P~(Z). The isometrics of J+
do guarantee the existence of preferred coor-
dinates y~ on/+:

q "(y)=[I (e, q), 0, 0, 0],

y' = u, y' =1/r = 0, y' = 8, y' = y.
These coordinates are unique up to a BMS trans-
formation. To each such coordinate system
Sachs has assigned a canonical basis

where I.~ is the associated orthochronous Lo-b.
rentz matrix, and where g&~(y) is the canonical
basis for the y coordinates:

q "(y)=[F (e, q), 0, 0, 0]. (18)

Denote by P~(Z) and P~(Z) the energy-momen-
tum linkages associated with canonical bases
for the y~ and y~ coordinate systems, respec-
tively. Then using the scalar character of the
functional Ps(Z), the covariance of the propa-
gation law Eq. (6), the linearity in $ of both
the functional and the propagation law, and
Eq. (17), we obtain

P (Z) =L P (Z).
b—

(19)

This transformation law states that the energy-
momentum linkage behaves as a Lorentz free
vector when interpreted by the preferred ob-
servers on g+.

Similar, although more complicated, state-
ments can be made about the transformation
properties of all the asymptotic symmetry link-
ages L@(Z). Constructs such as the angular-
momentum linkage do not have transformation
properties in complete analogy with Lorentz-
covariant theories due to the supertranslation
freedom.

A more detailed account of these results and
their connection with the works of Bondi, van
der Burg, and Metzner, of Penrose, and of
Sachs is being prepared.

~H. Bondi, M. G. J. van der Burg, and A. W. K.
Metzner, Proc. Roy. Soc. (London) A269, 21 (1962).

A. Komar, Phys. Rev. 113, 934 (1959).
P. Alexandroff, Elementary Concepts of Topology

(Dover Publications, New York, 1961), p. 16.
E. T. Newman, E. Couch, K. Chinnapared, A. Exton,

A. Prakash, and R. Torrence, J. Math. Phys. 6, 918
(1965).

E. T. Newman and A. I. Janis, J. Math. Phys. 6,

604



VOLUME 15, NUMBER 15 PHYSICAL RE VIE%' LKTTKRS 11 OCTOBER 1965

916 (1965).
R. K. Sachs, Proc. Roy. Soc. {London) 270, 103

(1962).

R. K. Sachs, Phys. Rev. 128, 2851 (1962).
R. Penrose, Proc. Roy. Soc. (London) 284, 159

(1965).

X-RAY SPECTRA FROM SCORPIUS (SCO-XR-1) AND THE SUN
OBSERVED ABOVE THE ATMOSPHERE*
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(Received 3 September 1965)

An important question which must be answered
about the recently discovered stellar x-ray
sources is the nature of the emission spectrum
of these sources. Several experiments' ' have
been performed in the past few years and a
number of theoretical models ' have been pro-
posed to explain the observations. To obtain
more precise information about the spectrum
of the x-ray source in Scorpius (SCO-XR-l), '
a proportional counter sensitive to photons with
quantum energies between 2 and 20 keV was
flown on a rocket. With this detector and a
special telemetry system it was possible to
measure the spectrum in this energy region
with high resolution.

The counter employed in this experiment was
a proportional gas counter filled with a 90%%uo-

10%%u~ xenon-methane mixture at atmospheric
pressure; it had a resolution of 20% full width
at half-maximum, at 5.9 keV. The counter win-
dow was made of 3-mil beryllium and had a
rectangular shape with an area of 8.67 cm .
Surrounding the counter (except over the win-
dow and over one end) was q in. of plastic scin-
tillator which was viewed by an RCA 4440 photo-
multiplier. This seintillator functioned as an
anticoincidenee shield against high-energy
charged particles in cosmic rays. In addition,
~-mil aluminized Mylar was placed over the
counter window to protect the scintillator from
light. The proportional counter was collimated
to a transmission half-angle of +10' in azimuth
and +45' in elevation, and it had a geometric
factor of 3.41 cm' sr. The calculated efficiency
of the proportional counter as a function of quan-
tum energy is shown in Fig. 1.

The counter was mounted on an Honest John—
Nike-Nike rocket which was launched on 12
June 1965 from Kauai, Hawaii. The launch
time was 1515 hours O'T, which was 39 minutes
before local sunrise. At that time, the zenith
coordinates were 22 hours right ascension and
+22' declination. The rocket was launched to-

wards an azimuth of 340' and 5' from the zenith
and reached an altitude of 170 km. Apogee of
the flight occurred at 160.0'% and 22.5' N at
1518 UT.

An Fe", Cd'~ source was mounted on the in-
side of the nose cone for continual calibration
during launch. The nose cone and this source
were detached from the vehicle at an altitude
of 88 km. Data were taken for the next 275 sec.
The payload was spin-stabilized with a spin
rate of 6.0 rev/sec, and was observed to pre-
cess in a cone of half-angle 3' with a frequency
of 0.11 rev/sec. Therefore, the rocket spin
vector pointed at a spot on the celestial sphere
which traced out a circle of radius 3', the cen-
ter of which was located at 21 hours 50 min.
right ascension and 27 declination. Scorpius
was scanned every revolution during this time,
and the x rays from the sun were detected dur-
ing the 70-sec period centered on apogee dur-
ing which the sun was high enough above the
rocket's horizon so that atmospheric absorp-
tion did not completely attenuate the x rays.
At apogee there was approximately 6x10 3 g/
cm' of atmosphere between the counter and the
sun.

Signals from the proportional counter were
amplified and lengthened to 1.2 msec. This
was done only with pulses not accompanied by

IOO

90-
80-

~ 70-

~ 60-
& 50-
4J
o 40-
U. 50-
4J

20-
IO—

I I I I I I I I i I I I I I I I

0 I 2 5 4 5 6 7 8 9 10 II l2 I5 l4 l5 l6 l7 I8 19 20
PHOTON ENERGY ( keV)

I'IG. 1. Efficiency of Xe-CH4 —filled proportional
counter as a function of x-ray energy.
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