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The nonlinear susceptibility describing the'

second-harmonic generation of light is real,
when the medium is transparent at both the
fundamental and the harmonic frequency. When
the medium is absorbing at either or both of
these frequencies, this nonlinear susceptibility
is a complex quantity. ' The nonlinear polar-
ization has a phase shift with respect to the
fundamental field. Measurement of the second-
harmonic intensity only determines the abso-
lute value of the nonlinear susceptibility. For
some III-V and II-VI compounds, which are
absorbing at the second-harmonic frequency,
such measurements have been carried out in
reflection. '& In this note an experiment is de-
scribed which determines the phase of the non-

linear susceptibility.
The experimental arrangement is shown in

Fig. 1. A linear polarized laser beam from
a Q-switched ruby laser enters an evacuated
box and generates second-harmonic radiation
by reflection from a nonlinear mirror of a
crystal with 43m symmetry, whose complex
nonlinear susceptibility must be determined.
The laser beam subsequently generates an
additional second-harmonic field in a potassium-
dihydrogen-phosphate (KDP) platelet which
serves as a reference signal. The second-
harmonic fields generated in the two samples
will have a definite phase relationship with
respect to each other, as each has a specific
relationship to the phase of the fundamental
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FIG. 1. Diagram of the experimental apparatus to determine the relative phase of the second-harmonic field, as
described in the text. Each laser pulse is monitored by the harmonic production in quartz.

field squared. The total second-harmonic out-
put is the result of the interference between
the two second-harmonic beams. This inter-
ference can be made visible by admitting dry
air into the box. The dispersion in air changes
the relative phase between the fundamental
and second harmonic in the 5.5-cm path between
the reflection spot on the mirror and the KDP
crystal. From tabulated dispersion data for
air, a phase shift of 180 occurs for an air
pressure equivalent to 22 cm Hg. The second-
harmonic intensity emerging from the box is
shown in Fig. 2 as a function of air pressure.
It has the expected periodicity.

The KDP platelet is a (100) cut, and can be
tilted around the (001) direction. The polar-
ization of the laser beam is almost parallel
to the (010) direction. In this manner the sec-

ond-harmonic production in the platelet may
be kept very small and made comparable to,
but slightly larger than, the second-harmonic
production in the mirror.

The nonlinear mirror may be turned around
its (110) normal so that the laser field points
along the (001) cubic axis. In this case no sec-
ond harmonic is generated in the mirror. 4

The KDP platelet is then tilted, so that its
second-harmonic output is a relative maximum.

Next the mirror is turned so that the funda-
mental field points along the (110) direction.
The mirror then produces a second-harmonic
field parallel to that generated in the KDP crys-
tal. The interference pattern in Fig. 2 is ob-
served, when the air pressure in the cell is
increased. If the fundamental field points along
the (ill) direction of the crystal mirror, no
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FIG. 2. The interference between the second-harmonic fields produced by the same laser beam in the GaAs

mirror and the KDP platelet, as a function of the air pressure in the box shown in Fig. 1.
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interference is observed because in this case
the fields generated in the two samples are
orthogonal.

The position of the first extremum in Fig. 2

is a measure for the phase relationship between
the squared fundamental field and the second-
harmonic field after reflection from the non-
linear mirror. From the angles for which ze-
ro harmonic production occurs in KDP, one
can determine exactly the phase shift 5@KDP
of the harmonic generated in KDP with respect
to that of the harmonic from the nonlinear mir-
ror. For our particular case 5yKDp=(v+13 30')
a 3 30' when the KDP is tilted so that its sec-
ond-harmonic output is a relative maximum.

The sign of the interference is reversed if
either the 43m crystal or the KDP crystal is
replaced by its piezoelectric antipode, or in-
version image. All phases in the following dis-
cussion have therefore an ambiguity of 180 .
This ambiguity of sign can only be eliminated
if the sign of the piezoelectric tensor is mea-
sured and related to the absolute structure,
both for KDP and the 43m crystals.

The experimental phase shift 6 between the
position for zero pressure and the first ex-
tremum can be determined from Fig. 2 to be
-123'+ 4'(+180') for GaAs. For a mirror of
InAs this phase angle was found to be -90'
+ 4'(+180') and for ZnTe 0'a 4'(+180'). From
these observations the phase angle yNL of the
complex nonlinear susceptibility may be cal-
culated from the relation

The phase angle y(2~) follows from the non-
linear laws of reflection, ' which for the geom-
etry of Fig. 1 may be written in the form

F. (2~) =E. (cu) ly lexp(iy )r2e
2 NL . iy (2ur)

2

with

imp(2(u)x,e

3 277 (X (2(d )
~2 (~(~) + 1j'f~(») + 1Pfp(~) + ~(2~))

%hen the known values of the complex dielec-
tric constants are inserted in Eqs. (1)-(3), the
following phase angles for the nonlinear sus-
ceptibility are found: yN1 = -71'+ 19'(+180')
for GaAs, yN&=-37'+ 20'(+180') for InAs,
and yN&= 34'+ 24'(+180') for ZnTe. With the
previously measured second-harmonic inten-
sities'&' the estimated nonlinear susceptibili-
ties relative to KDP become

/y = + (165-475i),
NL

GaAs

/g = ~(272-204i),NL
InAs

/y = ~(552+ 372i).
ZnTe

(3)

+ y(2(u)-2y((u)-5y
NL KDP

The phase angle y(&u) is the phase shift on re-
flection of the fundamental field, determined
by the Fresnel formula. for 45 angle of inci-
dence,

Z (u)) 1-a ((u)
ZP (d

Z. (u)) 1+n((u)
2

where

o. ((u) = (2e ((u)-1)'"

(2)
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