
VOLUME 1$ NUMBER 14 P H Y S I C A I. R K V I K %' i.K T T K R S 4 OcroBER 1965

Table I. Energies of terms of (28ns) ~S series in he-
lium.

Table II. Energies of terms of the (2snp) P series in
helium.

@expt.
(eV)

&calc
(eV)

~calcb

(ev)
&calc

(eV)
~calcb

(eV)

57.82
62.95
64.22
64.71

57.87
62.99
64.22
64.70

57.824
62.952

58.34
63.08
64.22
64.71

58.36
63.14
64.26
64.71

58.296
63.141
64.320

aSee P. G. Burke, D. D. McVicar, and K. Smith,
Phys. Rev. Letters ll, 559 (1963); P. G. Burke and
D. D. McVicar, to be published.

bSee reference 2.

aSee P. G. Burke, D. D. McVicar, and K. Smith,
Phys. Rev. Letters 11, 559 (1963); P. G. Burke and
D. D. McVicar, to be published.

See reference 2.

of the n = 5 terms of both series. A summary
of the measured and calculated values of the
energies of the two series appears in Tables I
and G.

Identification of the two series was aided by
the fact that triplet levels are not excited by
proton bombardment but show up strongly un-
der H, bombardment. . This is due to the fact
that in order to conserve spin the triplet lev-
els must be excited by a projectile bearing an
electron to exchange with one in the target at-
om. With the proton beam the terms of the
(2snP) 3P series did not appear.

We wish to express our gratitude to U. Fano
and C. Kuyatt for their helpful correspondence„
and to D. Lang and D. Gregoire for assistance
in taking the da, ta.
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HARD-SQUARE LATTICE GAS*

L. K. Runnels

Coates Chemical Laboratories, Louisiana State University, Baton Rouge, Louisiana
(Received 9 August 1965)

Exact statistical calculations of thermodynam-
ic properties of two- or three-dimensional fluids
with realistic interactions have never been ob-
tained over the entire density range. Present-
ed here are the results of rigorous calculations
for a two-dimensional lattice model of a fluid
of hard molecules, the system being of infinite
length and relatively large finite width. The
results provide strong evidence for the existence
of a second-order phase transition for a system
infinite in both directions.

The "hard-square lattice gas" investigated
is illustrated in the inset of Fig. 1; the only
forces present are the infinite repulsions cor-
responding to the nonzero area of the molecules.
Mathematically, this is the Ising model with
interaction +~ for two adjacent sites AA and
interaction zero for two adjacent sites AB or

BB. This is an extremely simple model of a
fluid which yet retains the excluded-volume
effect and reasonable lattice topology. Since
the interactions are either zero or infinity,
temperature enters into the problem in a triv-
ial way, allowing attention to be focused on
variable density.

Onsager' obtained the partition function for
the two-dimensional Ising model of arbitrary
size in vanishing field (in the original magnetic
formulation). Yang and Lee' showed that for
the ferromagnetic case (corresponding to at-
tractions between neighboring molecules of
area one) there can be only the one transition
found by Onsager at zero field (or density one-
half for the lattice gas). There has remained
speculation about the existence of an antiferro-
magnetic transition at some nonvanishing field,
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lattice was anticipated remarkably well and
better than by any approximate treatments of
the infinite lattice.

The matrix method" was used to obtain the
solutions for the hard-square lattice gas. For
a given finite circumference N, all permissible
states of a ring of N sites were determined,
a state i being permissible if none of its m~
(&N/2) molecules occupy adjacent sites. lf
the length L of the cylinder is large, the grand
ensemble partition function for B= LM sites,
temperature T, and chemical potential p, is

M= (B, T, p,) = exp(pB/k T) =y,

where X, is given by

FIG. 1. Equation of state of the hard-square lattice
gas, circumference 14.

T T
max uPu =vPv

uu =1
(2)

which would correspond to a phase transition
of the lattice gas with repulsive interactions.
The well-known molecular dynamics calcula-
tions' for a continuum gas of rigid spheres and

disks support the view that geometrical factors
alone, in the absence of attractive forces, can
lead to a phase tra, nsition.

The present model has been investigated pre-
viously by various authors. Burley used a
"ring approximation" for the combinatorics,
which predicted a finite discontinuity in the
compressibility at density 0.317 (where 0.5 is
the close-packed density). Gaunt and Fisher'
obtained high- and low-density expansions and
concluded that the transition, apparently third
order, is at density 0.37. Chesnut' has inde-
pendently arrived at essentially the same meth-
od used by the author and has obtained many
of the same conclusions.

The method reported here consists of obtain-
ing exact solutions for lattices of infinite length
and a series of finite circumferences N (cylin-
der convention of Onsager). Kramers and Wan-
nier' set the precedent for this approach by
solving the magnetic Ising model for infinite
strips of circumference up to six sites, cor-
rectly inferring the linear dependence on logN
of the specific heat at the transition point. Even
earlier, ' another well-known problem of statis-
tical mechanics —the entropy of dimers on a
plane lattice' —was investigated by studying
infinite strips of circumference up to eight.
In both cases, the exact result for the infinite

and is the largest eigenvalue of the matrix Pz
=

cg~ exp[&(mz +m&) lnx]; here x = exp(p/k T) and

E'zj ls unity if states i and j can describe adj a, —

cent rows of the lattice with no molecules over-
lapping, and zero otherwise. (Superscript T
denotes the transpose. ) Because of the extre-
mum property of X, shown by Eq. (2), the eigen-
vector v gives, in addition to the pressure,
the fractional density p=(5p/5p)T by the rela-
tionship

where

p = (x/NX) va'v,, T
(3)

(4)

The symmetry of the model can be exploited
to simplify the computations. Letting u~ denote
the degeneracy of state i —the number of states
equivalent to state i under the operations of
the dihedral group D& —and replacing v~ by

(&,)'"v, , P," by (~,+ )'"P,", the abo.ve equa-
tions remain valid if the matrix products are
evaluated by summing over only nonequivalent
states. This procedure greatly reduces the
size of the matrices involved and yields the
correct result since the largest eigenvalue
must belong to the totally symmetric represen-
tation of the group D~.

The entire analysis just described was car-
ried out by Louisiana State University's IBM
7040 (32K) computer. The MAp program (es-
sentially machine language) made extensive
use of the logical machine operations and op-
timized efficiency by "packing" matrix elements
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and transferring data between the central pro-
cessing unit and tape drives on two channels
simultaneously. An iterative process" was
used to determined A., and v, and hence p, for
a series of incremented values of p, /kT. To
find the second derivative of the pressure di-
rectly would require knowledge of all eigenvec-
tors; a more expedient approach for second
and third derivatives was to obtain them from

FIG. 2. Density isotherm for hard-square lattice
gas, circumference 16. Vertical scale shown is for
the density curve; scale and displacement vary for the
derivative curves.

finite-difference tables generated from the
chemical potential changes. " The calculated
thermodynamic properties were displayed graph-
ically using a Calcomp 563 X-7 plotter driven
by an IBM 1620. (The data points of Figs. 1
and 2 were plotted in this way. ) Lattices with
(even) circumference of 6 to 22 sites (3 to 11
molecules) have been studied. The matrix P
for circumference 22 is 1022 square; had it
not been reduced by symmetry as mentioned
above, it would have been 39603 square. Ma-
chine capacity extends to circumference 24,
but since execution would be lengthy and the
results already obtained seem to indicate well
enough all of the trends, it was decided not to
run 24 for the present. About 40 min. of run-
ning time are required to sweep the entire den-
sity range for a circumference of 14. There-
after, running time increases by a factor of
four for an increase in circumference of two.

Figure 1 shows the equation of state obtained
in this way, for N =14. Although a, bump in the
curve is clearly visible, no singularity is evi-
dent. In fact, it can be shown easily that there
can be no singularity for a lattice of finite cir-
cumference, using a slight modification of an
argument given by Onsager" based on Frobeni-
us's theorem. Any singularity for the infinite-
ly wide lattice must then be approached as a
limit of analytic functions.

In Fig. 2 is shown in a different form the re-
sults obtained for N =16. (For the larger prob-
lems only the interesting transition region was
studied; away from this region, the results
are independent of N for N) 10.) Since the den-
sity is given by p = (6p/6p) Z, the first deriva-
tive curve of Fig. 2 is the second derivative
of P with respect to g. This function can be
shown to be proportional to the heat capacity

Table I. Transition point.

p*/kT'
~0.003

p*/kT'
6 0.001

p*/kT
~0.0005

C = (~' p/&u*')Z
+ 0.005

4C/6 inN
+0.05&&10 '

6
8

10
12
14
16
18
20
22

1.162
1.235
1.268
1.287
1.298
1.306
1.311
1.316
1.319

1.35 + 0.01

0.7374
0.7597
0.7703
0.7762
0.7799
0.7824
0.7839
0.7858
0.7865

0.796+0.004

0.3472
0.3548
0.3586
0.3609
0.3624
0.3634
0.3640
0.3648
0.3652

0.369 + 0.002

0.120 09
0.13041
0.138 72
0.145 64
0.15156
0.156 73
0.16131
0.165 41
0.169 15

~ ~ ~

3.59 x10-'
3.72
3.80
3.84
3.87
3.89
3.89
3.92

583
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at constant pressure, or to the compressibility.
(The constant-area, specific heat is identically
zero. ) The curve appears to be of the lambda
type and is found to have a sharper maximum
with increasing ¹

Table I contains information about the maxi-
mum point (denoted by *) for all values of N
studied. Remembering the Kramers and Wan-
nier discovery about the heat capacity of the
finite Ising ferromagnet, the height of the max-
imum was plotted versus logN. A linear rela-
tionship is approached for N & 8, as indicated
by the last column of Table I. (There is a, slight
amount of wobble for the last points, attribut-
able to the increasing error accumulation in
the numerical operations for the larger prob-
lems. ) The finite thermodynamic properties
at the transition point were obtained from ex-
trapolation of plots versus N

There does appear to be, then, a transition
of order no greater than second. While it is
impossible to state unequivocally that the tran-
sition is not first order, the results obtained
give little cause to suspect a discontinuity in
the density curve at the transition point. The
evidence favors a second-order transition of
the logarithmic type, with transition point char-
acterized by p, */AT=1.35, p*/kT=0. 796, p*

=0.369, a.nd (ap*/op*)&=0.
The author is grateful to his wife for writing

part of the computer program.
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ACOUSTIC ATTENUATION IN A TYPE-II SUPERCONDUCTOR*

L. N. Cooper, A. Houghton, and H. J. Lee
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In this Letter we give a brief outline of the
theory of the response of a type-II supercon-
ductor, in a static magnetic field H&Hcy, to
an externally applied sound wave. We show
that the detailed information on the structure
of the mixed state of type-II superconductivity
can be obtained by examining the nature of ul-
trasonic attenuation in type-II material.

For simplicity, we have restricted ourselves
to the case of a longitudinal sound wave and
nave neglected impurity effects. Although the
theory can, in principle, be carried out in a
gauge-invariant manner, ' here we consider
only the dominant effect, s of a longitudinal wave,
namely, the charge fluctuations induced in the
system. Transverse currents, which arise
in the presence of a static magnetic field and
collective modes, ' will be neglected.

The charge response of a superconductor is

given in the thermal Green's-function formula-
tion'.

p(l, ~ ) =Q (G(1, 2;(u -&u )G(2, I;(u )

-F(1,2;(u )F(1,2; —((u -(u ))jar((u, 2)

=P(1, 2;(u )y(2, (u ).
m ' m

In Eq. (1), G and Ii are solutions of the Gor'kov
equations, 4

G(l, 2) = G (1, 2)-b, (2)E(2, 2)GO(1, 2),

+(I, 2) = ~(2)G(2, 2)G'(l, 2);

y(2, &um) is the scalar potential induced by the
sound wave; and

= 2m'/P, u = (2n + l)v/P (n, m integer).
yn n


