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trary units, the following values

IA(w p, 'S) I=2.94+0.15,

I A (K'K*', 'S) I
= 1.23 a 0.13,

1A(K K*, S) t =1.11 0.11.

The sum rule

A(rr p, S)-A(K'K*, S)-A(K K, S) =0

seems well satisfied with experiment to with-
in 20%. It thus appears that the sum rules ob-
tained in model (2) are compatible to the pres-
ent experimental data.
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One of the most remarkable properties of
the second-sheet function of the scattering am-
plitude, defined by the analytical continuation
through the elastic cut, is that we can compute
the value of the function itself in a small neigh-
borhood of certain points from the unitarity
condition alone without introducing any approx-
imation. This is not the case for the first-sheet
function, since, although in a small neighbor-
hood of s =m the pole term g /(m -s) domi-
nates, there still remains finite background
contribution A(s, z)-g /(m —s) and we have
no way to compute it exactly. In this note, we
restrict ourselves to the case of pion-nucleon
scattering and neglect the spin of the nucleon
for the reason of simplicity. Our claim is that

in a small neighborhood of the point

s =s+ =—m +2@,

where m and p, are the masses of the nucleon
and pion, respectively, the second-sheet func-
tion of the forward scattering amplitude has
the form

A (s 1)=, g +gII 2C

m' —u(z =1) s+ s

(2)+g C, '+0 ( ln
m. ' )'

where C, and Co can be expressed in terms
of the p, m, and the coupling constant g'/4v
explicitly. [See Eqs. (29), (30), (31), and (36).]
s =s+ is the point where the existence of the
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logarithmic singularity has been known from
perturbation theory. '

Suppose that the total cross section of m-N

scattering ot t(s), the coupling constant g2/4!T,
and the subtraction constant ao (if necessary)
are given accurately', then from the dispersion
relation of the forward scattering amplitude, '
an analytic function A(s) is defined in the cut
s plane. It is convenient to introduce q (the
magnitude of the momentum in the c.m. sys-
tem) as a, new variable which is related to s
by

4q' = (1/s)(s-(m + p,)'Hs —(m —p)'},

and the point s = s+ of the second sheet is

1 —( p, '/4m')'='+= '" I+(2&'/m )

in the q plane. The function A[s(q)] is at first

defined in the upper half plane of q, but, how-
ever, we can make an analytical continuation
to the lower half plane of q. Vfe shall denote
by A[s(q)] the over-all analytical function which
coincides with A[s(q)] in the upper half plane.
From Eq. (2), as in polology, ' we obtain

2

[s+—s(q) ] A [s(q) ]— =g'C, (4)

and

2 2C

m u8 1 8+ 8

It is evident that Eq. (4) gives rise to a restric-
tion on g'/4!! and ot t(s), and Eq. (5) gives a.

relation among g2/4!!, ao, and ot t(s) [in the
case of no subtraction this also gives a rela-
tion between g'/4!! and ot t(s)].

We shall give a brief proof of Eq. (2). Assum-
ing the spectral representation for A(s, t) to be4

t t ~ — A (s, t') u —u0, t ' 0
7T

A (s, u')
u

(u' —u, )(u' —u) ' (6)

the partial wave amplitudes af(s) are given by

1 1 ", & t' i 1 1 ", i 2m'+2 p.2-u'-s'i
+ 2

— dt'A (t', s)Q i 1+,
i
—,— du'A (u', s)Q& i

1+
2q

If we fix s in the small neighborhood of s =s+,
the argument of the function Qf in the first in-
tegral varies within

18p2-oo ( 1 + 2 C -1—
2 2

= 0'
2q2 4~2

and the second within

(2m+ p, )(m2+2p, 2)

R (4m 2g+ p.2)

where
tQ (u!) I (Ce

a=cosh 'iw
I &0

ties' of the function QI(w) which are needed
in our proof.

(i) If u! is real and Izo I)1, then

(12)

,m2+ 2 p,2-ui-s(1+
2q

when we carry out the integrations. On the
other hand, in the neighborhood of s = s+ the
argument of the first QI function of Eq. (7) is
very- close to 1, and so let us introduce a new
infinitesimal variable g by

+2/, —s
+ 2 +Tl ~

q

and C is a finite positive number independent
of l and w as long as w lies finitely outside of
the region [—1, +1].

(ii) For iq'I «1,

=K,(P) + (I + z) '([-(1/24) g+ (13/96)(2]K,(()
+ [-„'~'+~t4]SC,(~)}+O(i/I'), (i3)

where

At this point, we list three important proper- ( = W2r!(l + ~i) (14)
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and K)) ($) is the Bessel function of nth order
and the third kind.

(iii) For small Irf I,

Ql(1+ )7')

= -ln()7/W2)-y-(I)(l + 1) + 0( I)7'1nil I l '), (15)

where
g(x) = dlnl. (x)/dx

is the poly-gamma function and y = 0.577 21 ~ ~ ~

is Euler's constant.
Since the l dependence of the first term of

the right-hand side of Eq. (7) is quite different
from that of the remaining terms, we shall
investigate them separately. Let us denote
the remaining terms as fl. Namely, write Eq. (7)
as

(19)L = [I)7I-»'].

From the unitarity condition of the partial-
wave amplitudes,

a (s)-a ~(s) =iqs '"a (s)a ~(s),

for

(20)

function bo(s) in Eq. (6) is finite at s =s+. Con-
cerning the first term of Eq. (16), it does not
damp so fast as fl when l increases, but it as-
sumes a finite value when / becomes of the or-
der of 1/Iil I as we can see from Eqs. (13) and
(14). For extremely large l, namely l »I/I)7i,
Qi(1+)7') al» damps. Fro m Eq. (15), Ql(l+)7')
is of the order of Iln)7I for 0 &l &L, where L
is a positive integer which satisfies 1 «L
« I)7l 'IlnqI '". For example we can choose
L as

a (s) = -(g'/2q')Q (1+)7') +f .

From Eqs. (S) and (9) and from the property
of the function Ql given in Eq. (11),

I f 1&Ce

(16)

(17)

(m+ p, )' &s &(m+2 ',)',

we can construct the second-sheet function

II l( )
A (s, z) = (2l+1) „, P (z). (21)

] +iqs '"a-s l
l=0 l

for all non-negative /, where

=oc soh 'lo I &0
L

and C is a finite positive constant independent
of t'. Here we assumed that the subtraction

We restrict z to the region -1 ~z &1, where
the series of Eq. (21) converges absolutely.
Putting Eq. (16) into Eq. 21) 1st us examine
the contribution off) to A (s, z). Dividing the
summation range into 0 ~3 L and L+1
by using L given in Eq. (19),

a (s) Q (1+n')) (2l+1) . », , P (z) = —, (2l+1), 1,P (z)+O(e ),
l

1+a 'Q 1+if l
l=L+1 /=L+1 l

since fl is bounded by Ce . In Eq. (22) 1/a is defined by

1 . g

(22)

(23)

On the other hand,

a (s)

1=0 l

(21+1)Q, (1 + qm)
L L (2l+1)f P (z)

E P (z)+iqs2q' ~ 1+a 2Q (1+i) ) l A (1 +iqs "2a (s)){1+a 'Q (1+ii ))'
L'=0 l=0 l

(24)

since Ql(1+)7') and al(s) are of the order of Iln)7I in this range of l, and p(21+1)flPl(z) converges, the
second term on the right-hand side of Eq. (24) is of the order of Ilnil I

'. Combining Eqs. (22) and (24),

g' Q, (1+q')Pl(z)
A (sz) = —

2 (2l +1) 2 E +0( Ilnil I ). (25)
2Q' 1+a ' 1+)7')

l=o l
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Thus, fl cannot give rise to a finite contribution to the second-sheet function in the small neighbor-
hood of s =s+, this situation should be compared with the case of the first-sheet function

~(s, z) (2l +1) —~;q, (i + q') +f, Z, (z),
2q

l'=0

where fl gives a. finite contribution to A(s, z) at s = s+.
Separating the u-pole term, Eq. (25) becomes

a' i [Qi(i +n')]'
W (s, z) =, +, — (2l+1), , „-S,,;)+0((in'(-').m2-u 2q' a 1+a ' (1+yP) l'

l=o l
(27)

(28)

where

For (q( «1 the l summation of Eq. (27) can be converted to an integral by using $ defined in Eq. (14)
as an integral variable. In particular, for z =1, the result is

1 [Q (1+q')]' 1 / 1

l=0

and

In our case,

in Eq. (SO),

&[K.(&)]'
~1+ -'K (()'

CD= —] d5 —G(a, o ——E(a, 5) +) 01 t' 1 1

(=0

1/a = (g'/2 p,m)(1- p'/4m')

1 1 4$ [K,($)]' [1+a-iK(()] '[1+a-'K(()]"
2K,(g) & 1 i 3 ~ 1, s,)

[1+a 'K()]' ( 24 96 ' l2 64 )

(29)

(so)

(si)

(32)

(33)

in particular,

H =-2a[(l+ &)g(1+1)—1&12ln(1+1/l) —&(l+ &) +(l+ &) ln(l+1)]];
l

Ho = -a(()(1)-qa =a(y-~), (s 5)

1 1 +2//fl7,
o 2 ~2 1 ~2/4~2 o' (36)

where K„($) and )))(x) are the same functions
as those appearing in Eqs. (13) and (15), re-
spectively. The convergence of the integrals
and summation in Eqs. (29) and (30) can easily
be checked. From Eqs. (28) and (27) we obtain
the final result: Eq. (2), where

It is worthwhile to point out here that the con-
version of the summation to the integral given
in Eq. (28) does not hold at the point of poles
q = )7(l, a) which satisfies

1 + (1/a) Q [1 + g'(l, a) ] = 0 (37)

and its extremely small neighborhood [circle
of radius ()7(l, a) (4", for example] in the )7 plane.

In this note, we have developed a new method
which may be used not only to obtain the rela-
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tion between the total cross section and the
coupling constant, but also to compute the sub-
traction constant from the total cross section
without introducing any approximation. As is
well known, mathematically, the point s =s+
is an essential singularity on the second sheet,
since it is an accumulation point of a series
of poles. ' However, this does not raise any
difficulty in our method, as long as the total
cross section is known accurately. The tech-
nical problem as to how to apply this method
when the experimental data of the total cross
section are given with some ambiguity will be
discussed in the next paper, and the numerical
result for the case of pion-nucleon scattering
will also be given.
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