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An expansion of the pair distribution function
of a moderately dense gas not in equilibrium
in powers of the number density » has been
derived by various authors.»? With the aid
of this result, also an expansion of the kinetic
equation for the one-particle distribution func-
tion £, has been obtained leading directly to
an expansion of the transport coefficients in
powers of the density.® It has been shown tltxat
a similar density series for the transport co-
efficients can be derived from the correlation-
function expressions.*™®

The coefficients of the successive powers
of the density contain integrals which can be
classified according to dynamical events, in-
volving successively larger numbers of parti-
cles, for which the integrand does not vanish.
One tries to establish the existence of these
terms by showing that for any reasonable f;
the phase volume, corresponding to the dynam-
ical events that contribute to the integrand,
is finite. This has been verified in three di-
mensions up to the triple collision term.?:%57

However, it was pointed out by Weinstock®
and Dorfman and Cohen® that the phase space
associated with certain dynamical events in-
volving four or more particles is no longer
finite. Goldman and Frieman, and recently
also Swenson, arrived at a similar conclusion.’

The divergence of the phase volume implies
that the corresponding terms in the density
series both of the pair distribution function

k1

Mo
where o is the diameter of the disks, Vi the
peculiar velocity and T; the position vector of
particle 7, and fO(Vz') the normalized equilib-
rium Maxwell distribution. The differential
operator 6,, and the dynamical operator 7,(12, 3)
have been defined elsewhere.'? The coefficient
a is related to the solution of the ordinary Boltz-

mann equation
1 m 5/2
a=gr= (ﬁ) . (3)

In order to evaluate the integral in (2) we

and of the transport coefficients become in-
finite, unless special cancellations occur, e.g.,
between contributions from different dynami-
cal events which would lead to an essential
reduction of the available phase space, as was
pointed out by Dorfman and Cohen.? It is the
purpose of this Letter to investigate the latter
point in more detail. To that end we have in-
vestigated the first density correction to the
viscosity of a gas of rigid spheres in two di-
mensions (rigid disks). A divergence of the
phase volume similar to the one correspond-
ing to four particles in three dimensions oc-
curs already in the triple collision term in
two dimensions.!®

Collisions involving three particles lead to
a first density correction 7, to the viscosity.
In addition, the binary collisions lead to a ki-
netic contribution 7,9 and a potential contribu-
tion U to the viscosity linear in the density
due to the spatial dependence of the distribu-
tion function.!* Thus, up to terms linear in
the density the viscosity n can be written as

=10 Ty * g * 11, 1

where 7, is the viscosity in the low-density
limit. In order to study the divergence part
we only consider the contribution 71 from tri-
ple collisions. Limiting ourselves to the first
Enskog approximation (i.e., only one Sonine
polynomial is taken into account in the solution
of the kinetic equation for f;), 71 is given by

a
= [aV,dV,aV, [dF,dF 9,27 :6,,7,(12, S, (VI(Vo(VIVOV, + V0V, + V0V, (2)

transform it into a surface integral by the meth-
od of Green.'? A detailed analysis in both two
and three dimensions will be published in the
future. Three dynamical events have to be
studied; these are shown in Fig. 1. If the mo-
tion is followed backwards in time in all three
diagrams, the collision between 1 and 2 is fol-
lowed by a collision between 1 and 3. The dia-
grams differ in that as a third collision, 1 and
2 can collide again (recollision), 2 and 3 can
collide (cyclic collision), or 3 would have col-
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FIG. 1. Schematic representation of the dynamical
events.

lided with 2 if the collision between 1 and 3

had not caused any change in velocities (hypo-
thetical cyclic collision).’* In general, one

also has to consider the contribution from four
successive real collisions.!® However, they

do not contribute to the divergent part and there-
fore do not need to be considered here.

We use as integration variables in the evalu-
ation of (2) the velocities of the particles, the
collision parameters of the first (1-2) and the
second (1-3) collision, and the time 7 between
these two collisions as indicated by Green.!?
The latter time is made dimensionless by in-
troducing the variable 7*=7/7,, where 7, is
the mean free time needed to travel a distance
o. Carrying out the integration over all vari-
ables except 7*, it turns out that the resulting
integrand for large values of 7* behaves as
7*~1, Consequently, if we take into account
all events with various 7* up to a maximum
value T%*, the triple-collision contribution to
the viscosity diverges as

nkl/no =Ano?InT*+0(no?). (4)
One may also consider T* as the maximum time
difference between the first and the last colli-
sion as the two time intervals are linearly re-
lated in the limit 7* — e,

It can be shown that for the model considered,
the coefficient A is the sum of the following
three contributions corresponding to the three
different types of triple collision events:

V3

isions: A =——— Y3 AP
recollisions: Ar—225 po <216—112\/3—>,

cyclic collisions: A :—1— @

_1 .
=395 —(226-4405 1n3);

hypothetical collisions: A = L £i><32.

no 225

The contributions from the different diagrams
do not cancel, and the total coefficient A be-
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comes
1 V3 LA
A =595 5 (410—112‘/3——-54051113)
~-0,038 26. (5)

Of course, the possibility that this coefficient
would vanish if all higher Enskog approxima-
tions would be taken into account still cannot
be ruled out entirely, but seems very unlikely.

If T* would be chosen proportional to the
mean free time between collisions and, con-
sequently, proportional to 1/r02, then —A would
represent the coefficient of a contribution pro-
portional to no2lnno?2.14

Finally, we remark that the Enskog theory
of dense gases gives for the considered con-
tribution to the viscosity of a gas of rigid disks

1 4 V3
3 3mo?~-1.228n0%,

3
As remarked by Dorfman and Cohen,® the lat-
ter contribution is obtained if the triple-colli-
sion integral is evaluated in a much more lim-
ited part of phase space (corresponding to so-
called overlapping configurations).

The author is much indebted to M. S. Green
for his encouragement and advice, and to E. G. D.
Cohen and J. R. Dorfman for stimulating discus-
sions leading to the analysis described. He also
is indebted to R. A. Piccirelli and J. M. J. van
Leeuwen for valuable suggestions.
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In this Letter we report two striking effects
we have observed in the behavior of supercon-
ducting microgeometries in magnetic fields
and in the presence of high current densities.

The first of the anomalous effects occurs
in the sample geometry shown in Fig. 1. This
geometry is prepared by machining the design
with a sharp tungsten point on a 15004 -thick
Sn film which is on a glass substrate. The
microbridge at point A is a few microns long
and a few microns wide. A small copper coil
at point B (not shown) together with the super-
conducting circuit forms a transformer, and
therefore a constant-voltage ac source, which
supplies current to the microbridge when an
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FIG. 1. x-y recorder traces of voltage versus mag-
netic field for a 2.7u-wide Sn microbridge. The arrows
indicate whether the sweep was obtained by increasing
or decreasing the field. In each trace the field was in-
creased from zero to some terminal point and then de-
creased to zero. The different traces correspond to
different values of the terminal sweep point. The base
lines correspond to zero resistance. The resistance
corresponding to the voltage peak is approximately
that of the normal resistance of the microbridge.

ac current is fed to the copper coil. A small
copper Helmholtz pair provides at point A a
magnetic field which is perpendicular to the
plane of the film. Points A and B are far apart
so that the fringing field of the driving coil at
B is negligibly small at the microbridge, and
the fringing field of the Helmholtz coil at point
A is negligibly small at point B. A lock-on
amplifier, which has as its reference source
the signal to the copper coil at B, is used to
measure the voltage across the microbridge.

In Fig. 1 is shown an x-y recorder tracing
of the voltage across a 2.7Tu-wide Sn microbridge
as a function of the magnetic field when 150-
kc/sec current is flowing through the bridge.
An abrupt voltage spike is observed at a par-
ticular value of the magnetic field as the field
is increased and again at a higher value of the
field as the field is decreased. The location
of the second peak depends upon the magnitude
of the excursion of the magnetic field before
the field is decreased. We note the following
observations from a study of five microbridges
with widths ranging from 2.7 to 10 p.

(1) The voltage spikes are observed only at
frequencies above 10 kc/sec.

(2) Sharp voltage spikes are obtained at a
given temperature only for current densities
which lie in a very narrow range. If the cur-
rent is too small, there are no voltage spikes.
If the current is too large, the spikes broaden
into wide rectangular steps.

(3) If the field sweep is stopped at the peak
of the voltage spike, the voltage persists at
the peak level.

(4) The magnetic field at which the first spike
occurs (H,) depends only weakly upon the width
of the microbridge. An increase in the width
of the microbridge from 2.7 to 10 u results
in a decrease of H, of approximately 30%.

(5) H, is temperature dependent, increasing
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