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Recent experimental data on the low-temper-
ature specific heat of liquid He' do not follow
a linear law as expected from the Landau the-
ory, ' but rather seem to obey a law of the form
AT log(B/T). ' Among the proposed interpreta, —

tions' was the suggestion "that the self-ener-
gy due to the exchange of some collective ex-
citation has an unexpectedly singular form. "
Such singularities are well known in quantum
electrodynamics (infrared divergence), ' and
in the theory of the electron-phonon interac-
tion. In both cases, the essential cause of the
singularity is the possibility for the electron
to emit and absorb some soft bosons (with fi-
nite group velocity); the strength of the singu-
larity is related to the behavior of the emission
(or absorption) amplitude at small wave num-
ber. In this Letter, we briefly discuss the pos-
sibility of a finite coupling between Hes atoms
and collective excitations of the zero-sound
type (at zero wave number), show that this leads
to an infrared type of singularity for the quasi-
particle self-energy, and note that this singu-
larity has physically observable consequences,
among which are a nonlinear temperature de-
pendence of the specific heat, in agreement
with experiment, and a possible lowering of
the predicted critical temperature for super-
fluid He .

Let us assume for the moment that there ex-
ists (for energies ~ less than a. maximum val-
ue &) a boson, with propagator

D (k, u&) -=(~'—c'k')

coupled to the fermions with a constant effec-
tive coupling I'. Thermodynamic quantities
at low temperatures are related to the fermi-
on Green's function

G(k, e) =—[v —e -Z(k, w)]

for ~ small and k near the Fermi momentum
kF [in which case ek-v(k —kF), with v &c]. In
this region, the most singular contribution to
Z is a term (I), represented diagrammatical-
ly by Fig. 1.

If, in (I), G is replaced by the bare propaga-
tor

G = (Q) —E )

480

FIG. 1. Main contribution to Z{k, ~), relation {Q.

elementary quadratures give the result (for
I ski &Ov/c, l(ul &0)
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where

n -=I'/4zz'c '(c+ v),

and, consequently,

ReZ(k, ( ) - n~ ln[B-/(I e I+ I u) I)]

for I ski «O, I cu I «0 (B is a constant of order
0). It follows that, in this approximation, G

has a pole on the real axis, corresponding to
a stable quasiparticle of energy

E = e + Z(k, E ) —e [n ln(B/I e I}]

where G is replaced by Egs. (2) and (4), and
where f is the Fermi factor. One finds'

S- —,m*k nT ln(B/T),

instead of the form 3' AFT' of the Landau the-

Since both the quasiparticle velocity and the
residue (Ek/ek) of G at the pole vanish for k

=kF, the quasiparticles do not exist right at
the Fermi surface.

The low-temperature entropy per unit vol-
ume can now be evaluated by using the expres-
sion

~~+8--2 3- t dv —f'(v) —ImlnG(k, &u+z0), (8)(2zz)'S T
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ory'; hence, the specific heat has a similar
form. The empirical law' is thus recovered,
with em*/m = 0.5 and B=20'K.

The spin susceptibility is expected, like in
the Landau theory, to tend to a constant at low
temperature, because He atoms are assumed
to interact with spinless collective bosons.

The particle occupation number at zero tem-
perature,

n(k) = ——f d~ ImG(k, ~+i0),1 0
(10)

has also been derived from Eqs. (2) and (4).
Contrary to the Landau theory, ' n(k) is contin-
uous at the Fermi surface, and behaves there
as

i n(k)-n(k ) i
- [2n ln(B/I e i)]

temperature dependence of S.
The analytic structure of G obtained so far

is very different from that of G ', and, con-
sequently, the inconsistent calculation described
above [where G was replaced by G"' in (I)] is
questionable. A complete self-consistent so-
lution is difficult, since (contrary to the case
of the electron-phonon interaction) Z depends
on k as well as on &u (c/v is not a small quan-
tity here). However, in the region where the
pole cu =F~ lies, we have found in the above
approximation that Z(k, &u)

——o. w ln(B/i ek i).
It is therefore reasonable to attack the self-
consistent equation (1) by assuming a form
—&zap(ek) for Z(k, &u) in the region i &u I « I ek I

«0, and writing the integral equation for p,
which gives

One may suspect that this rounding off of the
Fermi surface tends to hinder the formation
of Cooper pairs at low temperature. As is well
known, a superfluid type of transition is ex-
pected to take place at a temperature T giv-
en by'

p(e )- [2n(1+u/c) ln(B/I e i)]"'.
k

The results are not essentially different, al-
though the singularity is weakened: ek/Ek is
now equal to (13), and the low-temperature
specific heat is

(13)

1
+00

c
—= Jde T Q G(k, (2n+1)imT )

C

xG(-k, -(2m+1)i~T ), (12)

AT [in(B/T)]"', (14)

a law which, for 8 = 0.5'K and A = 1.6 per mole,
or n(1+@/c)(m*/m)'= l.2, fits experimental
data f'om 0.015 to 0.3'K (Fig. 2). The value

if, for some angular momentum, the two-par-
ticle interaction potential has an attractive part
proportional to A. . In the usual theory, G has
the form (3), and Tc is proportional to exp( —1/
X). However, the singular form (2) or (4) of
G leads here to a critical temperature propor-
tional to exp[-exp(o. /A. )] for a weak attraction

A finite coupling of He' atoms with collec-
tive Bose excitations might therefore strongly
reduce the predicted critical temperature and
explain the apparent absence of superfluidity
for liquid He above 0.0035'K.

Whereas the infrared divergences of quan-
tum electrodynamics are removed from observ-
able quantities by the introduction of soft un-
observed real photons, the situation is differ-
ent here, because thermodynamical quantities
are exclusively related to closed diagrams;
formulas (8) and (10) were obtained by opening
a single fermion line in a closed diagram, and
therefore one is never led to consider diagrams
with external boson lines (with vanishingly small
wave number). In fact, we have not found any
actual divergence, but rather an unusually strong
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FIG. 2. Specific heat per mole of He versus tem-
perature. Experimental data are those collected in
reference 1 (dashed circles represent raw data). The
straight line [Eq. (9)] is the empirical law of refer-
ence 1; the curve represents Eq. (14).
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G (1)G (2) I"(ki(u„k,(u, )D(ki k2, (ui--(u, )

x I'(k, ~„k4~~)G(3)G(4), (15)

in which D is interpreted as the propagator for
the zero-sound type of excitation, and I' as the
vertex for its coupling to the fermions. Equa-
tion (15) defines I only on the energy shell
((u, —w, )' =c'(k, k, )', so th-at I" is somewhat ar-
bitrary off the shell.

The equation for I' is obtained by isolating
the contributions of the pole D in each term
of the (particle-hole) Bethe-Salpeter equation
for G, . This equation (II) is represented dia-
grammatically by Fig. 3. The kernel of the
Bethe-Salpeter equation has been separated
into two parts, one corresponding to the ex-
change of a boson between a particle and a hole.

R

FIG. 3. Equation for I', relation (II).

0.5'K for B is reasonable, since we expected
& to have the same order of magnitude as G.

We have still to justify the crucial assump-
tion of a finite I". In order to define this quan-
tity, we consider the two-body fermion Green's
function G, at temperature 7', corresponding
to the creation of particles 1, 3 and absorption
of particles 2, 4. Its Fourier transform, de-
fined for v, -v, =&u4-&u~, tuf = (2nf+1)im7', is
analytically continued in the whole three-corn-
plex-dimensional space ~,-~, = ~~-~, with the
help of a spectral representation, ' and the unique-
ness of this continuation can be proved by prop-
er use of Carlson's theorem. ' The singular-
ities of G, then lie on the surfaces ImGoz 0,
Im (v, -&u, ) = 0, Im (&u, -(u~) = 0, Im (&u, + m, ) = 0.
A particle-hole collective excitation (without

damping) will manifest itself as a pole in the
variable ~,-~, with a residue factorizing out
into parts depending on (1, 2) and (3, 4). We
thus separate from G, a term

the remainder (denoted by R) depending on the
two-body interaction. In principle, one should
solve Eq. (2), using the term (I) represented
in Fig. 1, and the equation (II) represented by
Fig. 3, self-consistently for l and G. We have
not achieved this program, but we may justi-
fy the assumption that I'(l, 2) is constant for
1-2 small in the following way. I et us com-
pute the right-hand side of the equation (II),
represented in Fig. 3, for 1=2, replacing 1

by a constant. If we take into account the sin-
gular structure of G, both terms of this expres-
sion are finite. Therefore, there does not seem
to be an obvioUs inconsistency in our assum-
ing a finite coupling between atoms and soft
Bose excitations.
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