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is zero unless j,(P,) ) 0) is a physical state,
i.e. , p, '&M, '&m, ', a.nd so this term cannot
contribute to the right-hand side. The second
term,

must therefore contribute to q =0; thus there
exist some states with the quantum numbers
of y, *9)2 and arbitrarily small energy. Q.E.D.

We can immediately apply the theorem to the
proton-neutron mass difference. Thus M„&M~,
and considering simply (P [[Q, gn]l0) we see
that there must exist charge-one particles with
arbitrarily small mass which have never been
seen. Similarly, one may not explain the break-

ing of the SU(3) mass multiplets by spontaneous
breakdown.
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A simple pseudospin model for a gas of hard-
core bosons with attractive interactions was
introduced by Matsubara and Matsuda, ' and
its zero-temperature properties were discussed
by Witlock and Zilsel. '

The purpose of this Letter is to point out that,
with a slight modification, the model is appli-
cable to liquid He~ and appears to account, at
least semiquantitatively, for the liquid-vapor
equilibrium as well as for the ~ transition, the
off-diagonal long-range order~ and superfluid-
ity of the low-temperature liquid phase, and
the nature of the elementary excitation spec-
trum.

The model is a quantum generalization of
the classical lattice-gas (Ising) model. Al-
ternatively, it may be viewed as a cell approx-
imation to Siegert's5 formalism for hard-core
boson fields: The volume 0 of the system is
divided into M cubical cells of size d where
d is of the order of, but somewhat larger than,
the hard-core radius a. (We shall take d =2.85
A, which makes a/d = ~5.) Field amplitudes

(j=l, ~ ~ ~, M), are associated with ea,ch
cell (rather than each point in space), and the
hard-core constraint is represented approxi-

ately by (i)j2 = 0, or nj =~~wh

is the particle number operator for the jth cell.
This means that the states for any one cell are
those of a Fermi oscillator. However, the am-

plitudes for different cells commute, the under-
lying field being Bose, so that the commutation
relations are

and the attractive part of the potential energy
by a "square well" attraction

V= -v, ,n. g.,
(ZJ)

(4)

where (ij) stands for nearest-neighbor pairs
in the cubic lattice space. (The hard-core re-
pulsion is, of course, represented in the com-

The algebra defined by (1) is that of the gen-
erators of an SU(2), the symmetry being be-
tween particles and vacancies in each cell.
Using the notation of reference 2, we define
pseudospin components

())
q pq + o (2) '(q+ g ) o (3) I 2 (2)2'

which have all the properties of Pauli operators.
In the original version of the model, '&' the

continuum kinetic-energy operator (I'/2m)
x fag ~ '(7gd'r is replaced by its finite differ-
ence approximation

Z = (8'/2md')P . . (g+ q.+)(f.-(q, ),
—
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mutation relations. ) Using energy units h'/md'
=1.49'K (d=2.85 A), the Ha, miltonian is, then,

A = 1-v(md'/h').

The limit A - -~ (i.e., h -0) is the classica].
lattice gas. ' The case A =0 ("isotropic Heisen-
berg ferromagnet"), as discussed in reference 2,
corresponds to a system with zero scattering
length; the "square well" of depth 5'/md' just
cancels the phase shift due to the hard core
for zero wave number. In this case of exact
SU(2) symmetry, H commutes with the total
pseudospin S = 2+&cr&. The ground state for
any particle number N is the state of maximal
S(=M/2) (M =number of cells =Q/d') with three
component S ~' = (M/2) —N. The ground-state en-

„.5—

ergy F0=0, independent of ¹ If we fix N only
in the mean (grand ensemble; (S@') = —,'M —(N)),
we have a degenerate many-body ground state
with maximal pseudospin alignment, S = —,'M,
at an angle 0 with the three direction such that
(S"')= ~cost!. The degeneracy is due to the
arbitrary direction of Sz in the 1-2 plane [broken
SU(2) symmetry], just as in Anderson's pseudo-
spin formulation' of BCS. There is off-diagonal
long-range order due to the macroscopic val-
ue of the transverse pseudospin component S~.
As shown in reference 2, this corresponds to
incomplete Bose condensation.

The case of (small) positive A is qualitative-

ly similar. This case corresponds to positive
scattering length and purely positive eigen-
value spectrum of the Hamiltonian (5) (i.e.,
a gas). H no longer commutes with S (but still
with S"', i.e., with ¹,axially symmetric Hei-
senberg ferromagnet). The ground state is
still homogeneous, though the ground-state
energy per particle Zo/N is now a, positive in-
creasing function of n =N/M = pd'. For finite
n&1, there is at low temperatures still a ten-
dency to pseudospin alignment, the mean mag-
netization per cell, o =2(S)/M, being larger
than l(o'+') I, which is constrained to

o {3'=1-2n.

l l.5
T {in un!ts gf $/md- }.49oK )

(b)

(The symbols ( ) now denote thermal expecta-
tion values. ) For simplicity we discuss the
molecular field (Hartree-Fock) approximation.
In this approximation the Helmholtz free ener-

gy per cell is given by

0

T V/0 PH

{L}gu}O+

Tza sg (}+lAl)

x(ln2- 2[(1+g) ln(1 + g) + (1-o) in(l-v)]j, ( t)

which, for fixed n, is minimized by the Bril-
louin function v=tanh(3cr/2T). Since 0 must be
~

I

Q. @'! as given by (6), the phase transition
for a given density occurs at the temperature
T&(p) at which

!0@'
I

= Il —2n I =-tanh[(3 Il —2n I)/2T ].
A,

FIG. 1. p-T diagram for the simple pseudospin
model (references 1 and 2) in "molecular field" approx
imation. (a) For A- 0 (gaseous ground state). Re-
gion I corresponds to the normal gas, region II to
Bose condensation. (b) For A& 0 ( liquid ground

state). The full line represents the liquid and vapor
densities in equilibrium. The region inside this
curve corresponds to the two-phase region. The ~
transition (broken line) is not real in this case since
it lies entirely within the unstable two-phase region.
The two-phase curve shown in the figure is for A=-1.

The transition temperature is highest for n

T&' = T&(n = —,') = -', (=2.24'K). The transition
(Curie point) is second order in this approx-
imation, but an exact solution mould presum-
ably show a logarithmic singularity in the spe-
cific heat. The phase diagram is shown in

Fig. 1(a). It is symmetric about the line n = ~.
For n & -', the transition may be thought of, rough-

ly, as a Bose condensation of particles, for
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FIG. 2. p-T diagram with zero-point energy correction [Eq. {7')] in molecule. ar field approximation, for A=
—3, a/d = ~. The solid portion of the & curve lies within the liquid phase and '

1
' th' . Th hn is rea in is case. The broken por-

tion, in the unstable two-phase region, is not real.

in & & as a Bose condensation of holes. Note,
however, that in contrast to the ideal Hose gas,
the present system has a phase transition also
in the two-dimensional case (thin film), the
X temperature being re'duced (i.n the molecular
field approximation) by R factor

For negative A (negative scattering length;
bound many-body ground state), the situation
is quite different. Except for negligible sur-
face terms the ground-state energy per parti-
cle is -3 IA (n, so that the system tends to max-
imum density (n=. l). For N/M&1 (i.e., IS"'I

i& —,M~, the system separates into two phases
(domains): a condensed high-density phase
with, at T=O, n~=1 (pseudospins "down"),
and a low-density gas phase with, at T=G, n
=0 (pseudospins "up"). .For finite T the phase
equilibrium is given. by

where the chemical potential is g= Sf/Sn, and
the pressure ri(=md'P/h') = nlJ. f. In the "m-o--
lecular field" approximation [Eq. (7)] the solu-
tion of (9) is again a Brillouin function symme-
tx ic about n = '

n, (T) =1-n (T),

This is shown in Fig. 1(b). The critical point
is at nl, =n( =-2, Tc =(-,')(1+ IA I) =(I+ I& I)Ty'.
The essential feature is that for any A&0 the
curve (10) is everywhere outside the x curve (8),
so that no X transition occurs (the "superfluid"
region lies in the unstable two-phase portion
of the p-T diagram): In the gas phase there
are not enough particles, in the condensed phase
not enough holes, for Hose condensation to occur.

Modified Hamiltonian. —Any modification of
the Hamiltonian (5) which makes the ground-
state density of the liquid phase, n~, less than
1 and produces an intersection of the ~ curve
with the liquid-gas coexistence curve in the
p-T plane will result in a phase diagram show-
ing both the X transition and the liquid-gas tran-
sition. This may be accomplished in several
ways. The simplest and, I believe, physically
correct way is to note that the finite difference
approximation (3) for the kinetic energy smoothes
out the short-wavelength behavior of the wave
field and thus does not give the high-density
pole in the zero-point energy'. Zo/N —~'8'/
2m(r-a)', as x—a-0 (x =nearest-neighbor dis-
tance). In the molecular field approximation
this may be written as Ko/N —(~'5'/2m)o'"(I
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Table I. Summary of numerical results for pseudospin model with zero-point energy correction, in molecular
f'eld approximation. Parameters (defined in the text): A= —2, d = 2.85 A, a/d =-; g /md = 2.06 x10 erg=
1.49'K).

Calculated Experimental

X temperature
Critical temperature
Pressure at A, point
Critical pressure
Liquid ground-state

energy per atom
Liquid ground-state density
Speed of sound

(from compressibility at T =0)

(—)g2/~2 2 24oK

4.S2/md'= 6.1 K
0.12 atm
3.8 atm

-4.(A2/md =-8.2 xl0 ie erg

2.3 X1022 cm 3

270 m/sec

2.19'K
5.2'K
0.05 atm
2.3 atm

-10 &&10 ~~ erg

2.2 x]022 cm
240 m/sec

gp&~3) 2 = (/2'/2md2)yg a(1 gg /d)
can correct for the presence of this pole by
adding to f [Eq. (7)) a, term

( 1)~2 5/3(1 1/3/d) —2 x ( ) (7')

The factor y(n) is a rapidly increasing function
which approaches 1 as n - (d/a)' (i.e., p -a '),
and approaches 0 as n —0. Its exact form is
not important. We choose

y(n) = [n(a/d)']'. (7")

Since f ' depends on n only, its presence does
not affect the A. curve [Eq. (8)]. The liquid-
gas equilibrium [Eq. (S)] must now be computed
nume'rically. The resulting p- T diagram is
shown in Fig. 2 for A = —8 (i.e., v = 8.2 x10-"
erg), d=2.85 A, and a/d =&'. Some of the nu-

merical results are summarized in Table I.
Considering the crudeness of the molecular
field approximation, the agreement with ex-
periment is almost too good. Calculations us-
ing the temperature-dependent RPA ("spin-
wave" approximation) are being done.
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