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DETERMINATION OF THE SPINS AND PARITIES OF Nii2*(1688) AND Nsi2*(1S20)
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This paper is a preliminary report on the
results of two counter experiments recently
completed at Nimrod.

(i) Differential cross sections for II+p and
II p elastic scattering have been measured at
a number of momenta in the region of the iso-
bar N„,*(1688) and N», (1920), which occur
at pion laboratory momenta of 1030 and 1505
MeV/c, respectively.

(ii) Polarization effects have been measured

in the same region using a polarized proton
target of the type' recently described by Cham-
berlain et al. ,

' and Schultz,
The differential cross section do/dQ may be

written

da/dQ=Q C P (cosa),
n n n

where 8 is the center-of-mass scattering an-
gle. The expansion coefficients C„and Cn
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FIG. 1. The coefficients C„defined in Eq. (1) for the elastic scattering of m mesons by protons. The points
at 1120, 1440, and 1690 MeV/c are from the work of Helland et al.I; the rest are from this experiment.
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p JQ. 2. The coefficients C+ defined in Eq. (1}for the elastic scattering of 71 xnesons by protons (data from
this experiment only). The dotted curve is the prediction for Ce described in the text.

for scattering of 7t+ and w were obtained from
the differential cross sections by the method
of least-squares fitting and are plotted as func-
tions of be am momentum in Figs. 1 and 2. Al-
so shown are points from the work of Helland
et al.

Similarly, one can write

1 A do.
=QD P (cos8),

sine P dA n n
n

where A is the asymmetry in scattering from
a proton target with polarization P. The coef-
ficients Dn for m scattering obtained from
our experimental data are shown in Fig. 3.

Let the scattering matrix M be defined by
the equation

M =f(8)+ ig(8)a ~ n,

where a is the Pauli spin operator, n = (kix kf)/

(I k &&

kfl ), k, , kf being the initial and final mo-
menta. Then

and

do/d& = If(8) I'+ Ig(8) I'

= -2Im[f (8)g(8)],

wher e

f(8) =g[(l+ l)A ++ lA ]P (cos8)

and

g(8) =+[A +-A ] sin8P ' (cos8).

A~+ are the scattering amplitudes for states of
total angular momentum Z= l + —'„and Pf '(cos8)
= [d/d (cos8)]Pi (cos8).

Expressions for those expansion coefficients
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FIG. 3. The coefficients D„defined in Eq. (2) for the elastic scattering of m rnesons by polarized protons.
The curves for D4 and D& are the predictions described in the text.

relevant to the analysis of our data are given below. Factors of —,
' have been omitted; e.g. D5 means

D5~2.

C~ = 10.29 Re(D5*D3) + 10.29 Re(E5*P3) + 2.57) D5 8+ 2.571E5l'+ 8 Re(EV Pl)+ 5.71 Re(E7*P3)

+ 4.68 Re (EV*F5) + 4.21 t E7 i' + 5.71 Re (G V*D3) + 4.68 Re (G 7*D5) + 4.21 I G 7 I'+ 8 Re(G 7 *S)

+terms with G9 or higher waves;

C5= 14.29 Re(E5 D5)+ 13.33 Re(FV D3)+ 5.71Re(FV D5)+ 13.33 Re(GV P3)+ 5.71 Re(GV*F5)

+ 6.59 Re(G 7*F7)+ ~ ~ ~,'

C~ = 18.18Re(E7 E5) + 3.03 l F71'+ 18.18Re(G V*D5) + 3.03 I GV I'+ ~ ~ ~,'

C7=22.84Re(GV F7)+ ~ ~ ~ '

Ca = 27.41 Re(G9 G7) + 3.43 l G91'+ ~ ~ ~,'

D4 = -12.861m(F 5*D5)+ 12 Im(E7*D3) + 0.86 Im(F 7*D5)-12Im(G 7*P3)—0.86 Im(G V*F5)

-22.60 Im(G 7*F7);

D5 = 16.67Im(F7*F5)-16.67Im(G7*D5).
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(i) Spin of N», *(1920).—In the region of this
resonance (around 1500 MeV jc) all the w+P co-
efficients C~ with n up to 6 have maxima, while
C, and C, are small. Assuming that the peak

+ +

is due to a single resonant state, the absence
of a peak in C, shows that J- —,

' for the reso-
nant state. The smallness of C,+ shows that
nonresonant states with J&

2 are only weak-
ly excited, and the smallness of C, shows that
a J= -,

' state of only one parity can be excited
(F7~2 and G»2 would interfere to give a nonzero
C,+). Thus the peak in C,+ must be due to the
term 18.1 Re(F7~2*F»,), or 18.1 Re(G7„D»2)
in the case of a J = —', resonance (together with
a nonresonant J= ~7 amplitude of the same pa-
rity), the term 3.03 ' G»2t2 for a J=

2 resonance
with no J= 2 state, or a combination of the two
terms if there is a J='; resonance as well as
a nonresonant but appreciable J = 2 amplitude
of the same parity. However, if J= 2 for the
resonance, then we must have a substantial
J=; amplitude to explain the peak in C6+, a
substantial J= 2 amplitude of the opposite pari-
ty to explain the peak in C,+, and contributions
from lower J states to explain the magnitudes
of the peaks in the lower coefficients. The val-
ues of the imaginary parts of these nonresonant
amplitudes can be estimated from the values
of C„+ at the resonance. Now Co=+(J+-,')lAJI',
where the sum is over all states and AJ is the
amplitude for the state J; if J= 2 is assumed
for the resonance, then the estimates we ob-
tain for the imaginary parts of the AJ lead to
a value of Co+ much larger than our measured
value. Therefore, J ='-, for N», *(1920)

(ii) Spin of N»2*(1688). —The a.mplitude for
w P elastic scattering is A(w p) = (-', )A(I = —,)
+ (—,)A(I = —',), where the two terms on the right
are isotopic-spin eigenamplitudes. We attrib-
ute the peaks in C, to Cs to a resonant state
with I= 2. For a J=

2 resonance it follows from
the size of the bump in C, that Ce should have
a peak of at least 2 mb/sr at the resonant en-
ergy, ' the absence of any such peak shows that
J = P for N», *(1688); the peak in C, must be
due to interference with a J= 2 amplitude of
the opposite parity. (C,', the corresponding
coefficient in the charge-exchange process m

+P —v~+n, also has a positive peak. In terms
of the isotopic-spin eigenamplitudes, D», &»,
F», and F», for the J=2 states withI = 2 and
-„ the expressions for C,' and C, are

Cs' = 14.29 Re[2/9F~5 D~, +2/9F» D~5

2/9F „*D„2/9F„-*D„], -

C, = 14.29 Re[4/9F»*D„+ -', F„*D„
+ 2 /9F~5 D~~+2/9FS, D„].

Since the magnitude of the peak observed in
C5' is approximately half that in C5, and since
both peaks are positive, it follows that both
J= —' states must be dominated by the I = 2 am-
plitudes. )

(iii) Parity of N», (1688).—The energy de-
pendence of C, in the neighborhood of N*(1688)
has the form of an interference between a res-
onance state and a predominantly real nonres-
onant state whose real part is positive —viz. ,
the coefficient is positive below resonance,
negative above resonance, and passes through
zero at the resonant energy. In order to have
this behavior in C~, the J= —; resonant ampli-
tude must be interfering with a J= 2 amplitude
of the same parity. Since higher J values are
not appreciable, the behavior of the coefficient
D, in the asymmetry distribution can be pre-
dicted. We have Ds = 16.671m(E»2*F«, )-16.67
& Im (G»2*D», ) = 16.67 Re(F»2) Im(F», )-16.67
XRe(G», ) Im(D», ), using the knowledge from
C, that the J=

2 amplitude is predominantly
real. Since C, is small, only one of +7/2 or
t"7(2 is appreciable, so only one of the terms
contributes. The imaginary part of a partial
wave amplitude for elastic scattering must be
positive, so we expect D, to be positive if
N (1688) is F», and negative if it is D»2 (or
zero if the interpretation of C~ is incorrect).
The experimental result is that D, is positive
in this energy region, so N (1688) must be an
I',(, state.

(iv) Parity of N», (1920).—This resonance
has I= —',, so it occurs in the m -P elastic-scat-.
tering amplitude with a coefficient of 3. It must
therefore contribute at least part of the J= —,

'
amplitude necessary to explain C~ and D~
N*(1688) is more than one full width away from
N*(1920), so the J'= —,

' amplitude would be ex-
pected to be predominantly real and positive
if it is contributed mostly by the I = 2 state.
Preliminary data on charge-exchange scatter-
ing, e

m +P —no+ n, show that the correspond-
ing coefficient C, is positive in the energy re-
gion where C, is negative. This shows that
the main contribution to C6 is interference
between an I= 2 amplitude and an I = 2 ampli-
tude. It has already been established in (iii)
that the J=-,' state and the resonant J=-' state
in 7t -P elastic scattering have the same pari-
ty, so the N*(1920) resonance must be given
the assignment F7/2.
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Quantitative predictions of C6 and &, have
been made by using Breit-Wigner amplitudes
to represent the two resonances

A = xA/(e-i),

where

elastic cross sectionx=
total cross section '

e =2(E *-E*)/I',
'v

8*=total energy in center-of-mass system,

I =width.

The parameters x and I" can be estimated from
the heights and widths of the bumps in the total
cross-section curves, given the J values and
a smooth background curve (which is rather
arbitrary). Independent values can be obtained
from oe1=47tCo. For N*(1688) we find x=0.80,
I' = 100 MeV and for N*(1920), x = 0.41, I" = 170
MeV. It is necessary to allow F for N*(1688)
and x for N*(1920) to be energy dependent, be-
coming 1"= 157 MeV at E*=1920 MeV and x
=0.69 at 1688 MeV, respectively. With these
parameters one obtains the curves for Ce and

D, shown in the figures. It can be seen that
a reasonable representation of the energy de-
pendence between the two resonances is obtained,
justifying the assumption that the two resonant
states are dominant in this region.

We may also attempt to calculate the coef-
ficient D4 . As indicated above, the F7/2 am-
plitude is significant but small, and the G7&2

amplitude negligible near 1000 MeV/c. The
coefficients C, and D4 must therefore be
dominated by I'»,&», interference in this re-
gion. Assuming that the +», amplitude is res-
onant, the D», amplitude may be estimated from
C, . If it is taken to be purely imaginary and

slomly varying, as seems reasonable from the
approximate symmetry of the peak in C, about
the resonant energy, the dotted curve shown
in Fig. 3 is obtained for &4 . This clearly does
not agree with the values obtained experimen-
tally. An improvement may be obtained by in-

troducing a real part into the &„,amplitude
which must, however, be positive below the
resonance and negative above it. It is also nec-
essary to allow Im(D»2) to vary in a similar
way to Im(F», ). This behavior of the D», am-
plitude is also required for consistency with
the symmetric peak in C, and suggests that
the D„, state may itself be resonant. If we as-
sume that it can be described by a Breit-Wig-
ner formula with E~*=1674 MeV, I'=100 MeV,
x=0.42, then the prediction for D4, as shown

by the solid curve in Fig. 3, is in very good
agreement with experiment. A reasonable in-
terpretation of our data is therefore that there

is an I= 2, D», resonance as mell as the +»,
resonance near 1000 MeV/c. 7 A complete ac-
count of these experiments will be published.

We are grateful to G. H. Stafford and D. C.
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also like to acknowledge the support of the Nim-
rod Division and our own technical staff.
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In this experiment the asymmetry was measured in
vr scattering from a polarized target at 16 angles
(0.83 &cos0*&-0.95) at each of eight beam momenta.
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