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Since intense proton beams can be produced,
and since it is unlikely that the nuclear polar-
ization would be disturbed by the collision of
H(2s) with argon, it is probable that a polarized
negative-ion source can be built with intensi-
ties in the microampere range.
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At very low atomic densities all Zeeman sub-
levels of an excited atomic state decay with
the natural radiative lifetime of that state.
Under these conditions the widths of the Hanle
effect and optical double-resonance signals
may be used to measure the lifetime of the
state. ' However, at higher atomic densities
the Zeeman sublevels can relax to each other
through collision and radiation trapping so that,
in general, (24+1)2 parameters are necessary
to specify the decay of the excited atoms. These
processes result in a broadening or narrow-
ing of the level crossing or optical double-res-
onance linewidths and can be ascribed to a change
in the lifetime of the excited atomic state. '&' In
most experiments the requirements of symme-
try reduce the number of different relaxation
times from (2J+1)' to (2J+1). Physically,
these are the lifetime of the excited-state pop-
ulation, the lifetime (7or) of the magnetic mo-
ment of the excited state (the "orientation"),
the lifetime (Tal) of the "alignment" of the ex-
cited state (an atomic polarizationwith zero
magnetic moment), and the lifetimes of other
quantities which describe the angular config-
uration of the excited atoms. In contrast to
classical nmr experiments where only the mag-

netic moment of the system is observed, an
appropriate choice of polarizations in level
crossing and optical double-resonance exper-
iments allows one to observe the lifetimes of
"orientation" and "alignment" separately.

For computational purposes it is most con-
venient to treat this problem using the density
matrix formalism. Then each separate mul-
tipole component p~~~ of the density matrix
decays with a characteristic lifetime. 4 The
"orientation" of the atoms is proportional to
p "', while the "alignment" is proportional
to p '" so that level crossing lifetime measure-
ments give 7al. With circularly (elliptically)
polarized exciting light, both p~'~ and p~ ~ are
excited, and with an appropriate choice of po-
larization for the detected light, 7.or can be
measured. 7

Under conditions where strong radiation trap-
ping is operative, Omont' has recently measured

Tor and Tal for the first Pj state of mercury.
His results are in good agreement with theoret-
ical calculations of Dyakonov and Perel. e In
this Letter we report on different values for
~or and 7al in the first 'P, state of lead where
the difference in ~or and Tal is caused by col-
lision effects rather than radiation trapping.
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FIG. 1. Schematic of Hanle-effect apparatus.

In spite of the great qualitative contrast between
the short-range, two-body interactions respon-
sible for collision broadening5 and the long-
range coupling of many atoms through the ra-
diation field which causes coherence narrow-
ing, ' both processes give rise to different life-
times Tal and 7or.

Lead atoms in a qua. rtz resona. nce vessel are
excited from the (6s'6p') 'P, ground state to the
(6s'6p7s) 'P, ' excited state by 2833A resonance
light. The level crossing signals were detected

0
in the 3639A cross fluorescence. A sketch of our
apparatus is shown in Fig. 1. A variant of the
zero-field level crossing technique' (Hanle ef-
fect) was used. The widths of the Am =1 zero-
field level crossing signals were used since
these can originate from both L =2 and L = I
components of the excited-state density matrix.
For incident light polarized at 45 to the mag-
netic field, the Am =1 signal originates from
a pure L =2 component of p, while for circular-
ly polarized exciting light the Am =1 signal

originates from a pure L =1 component of p.
Interference from the Am =2 signal can be elim-
inated by using an analyzer for elliptically po-
larized light in the detection arm. It can be
shown that only hm =1 signals will be detect-
ed if the projection of the ellipse on the plane
perpendicular to the static field is a, circle.
Stressed quartz phase-shift plates' were used
as quarter wave plates in these experiments.
After a preliminary alignment of the elliptical
analyzer to the correct angles, the phase plate
was stressed until the Am =2 signal was elim-
inated. Usua. lly a slight empirical adjustment
of the angle between the quarter wave plate
and the linear polarizer was necessary to ob-
tain complete elimination.

The general behavior of the linewidth" is
indicated in Fig. 2, where the ratio of yal =1/Tal
to the natural width I' =1/7 Iv = 5.75(20) x 10
sec]" has been plotted as a function of atomic
vapor density. The results of measurements
of Tpr and Tal are summarized in Table I. Be-
cause of the fairly large f value for the 2833A

Table I. Results.

Lead
atomic density

(cm 3) yo jI'
(yor 1')/(yai 1')

Experimenta? . Theoretical Reference

2.9x 10~'

1.3x 10~~

1.3x 10~3

1.99(3)
1.36(2)

0.852(18.)

1.76 (3)
1.22(2)

0.818(18)

1.30(5)
1.64(18)
0.8(2)

]..30 1.67

0.714

aThese results are for the case of resonant self-broadening.
These results are for the case of foreign gas broadening.

cThese results are for the case of a saturated coherence narrowing effect.
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resonance line in lead, the linewidth at high
vapor densities should be determined chiefly
by resonant collision broadening. '~' The re-
sults of our measurements are consistent with
rough theoretical estimates of Omont' for the
ratio of the two relaxation times. A marked
difference in pal and yor was also observed
with a gassy resonance cell. The exact con-
stituents and pressure of the foreign gas are
unknown, but a spectrographic analysis of the
light from a microwave discharge through the
cell showed N„OH, CO, and NH emission
bands as well as strong lines from atomic hy-

drogenn.

Coherence narrowing in lead is much less
pronounced than in mercury because of the
presence of branch decay modes from the ex-
cited state. One can show that the theoretical
maximum coherence narrowing is reduced by
the branching ratio (=27%) to the ground state.
Since the coherence narrowing is so small,
our experimentally measured values of yal
and yor are nearly the same, but within exper-
imental error our ratio of (yor-I')/(yal-I') is
in agreement with the theoretical ratio of —,'.

These experiments demonstrate that under
a wide range of experimental conditions the
different multipole components of the density
matrix describing excited atoms in a vapor
relax with measurably different time constants.
More detailed studies of this kind should yield
considerable information about the mechanisms
involved in depolarizing collisions.
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~The initial density matrix for atoms excited with
light of polarization vector e from a ground state of
angular momentum I to an excited state of angular mo-
mentum J is

p = 5~ (—1) E T ((—1) v 3 W(11';LI)),

where the TM are Fano's irreducible tensor opera-
tors for the level J,

L J+tn-M=Z l~, ~&«, m-MI(-1) C(JJL; m, M-m)
M m

E = —5~e e C(llL;p, M—p)M p M-p

describes the polarization of the incident light. Ep is
a scalar and is tbe magnitude of the polarization vec-
tor. QM~ is simply tbe spin density of tbe exciting
light and is zero if the light is linearly polarized.
g~~ also bas a classical interpretation; it is the Max-
well stress tensor for tbe electric field of the exciting
light. Thus while L =0 and I =2 components of p are
excited by any light beam, circularly (elliptically) po-
larized exciting light is required to excite L = 1 com-
ponents of p. One can also show that the detected op-
tical signal in Hanle-effect experiments and in many
optical double-resonance experiments is most lucidly
expressed in terms of irreducible tensors. One finds
that to detect a signal from an L =1 component of p,
circularly (elliptically) polarized light is required.
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