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Because polarization phenomena are impor-
tant in low-energy nuclear physics, it would
be desirable to have a source of negative hy-
drogen ions with polarized nuclei for use in
tandem electrostatic accelerators. One ap-
proach to this probelm has been described by
Gruebler, Haeberli, and Schwandt, ' who start-
ed with a beam of polarized deuterons and pro-
duced polarized negative deuterium ions by
charge exchange in a foil. The intensity of the
beam was small, however, since about 1% of
the deuterons are converted to negative ions.

Our proposal for a polarized negative hydro-
gen-ion source is as follows: (a) produce H(2&)

by the reaction' H +Cs-H(2s)+Cs; (2) po-
larize the H(2s) atoms by selectively quench-
ing the m = -~ states in a 575-G magnetic field';
and (3) selectively attach an electron to the H(2s)
atom, by the process to be described in this
paper, in a weak magnetic field. This sequence
of processes should yield negative ions with a
nuclear polarization of 50%. Of course, if a
radio-frequency transition is interposed be-
tween steps (2) and (3), a nuclear polarization
of 100% could be obtained.

The primary purpose of the work reported
here was to find a, way to accomplish step (3).
In particular, we sought a charge-exchange
process by which metastable hydrogen atoms
could pick up an electron, forming a negative
hydrogen ion. A reaction of the type H(2s)
+X- H +~ is complicated by the fact that

both of the products are charged and therefore
the molecular potential energy contains a large
contribution from Coulomb forces. Thus if
we tried to choose a nearly resonant reaction
by selecting an atom or molecule I that would
make H(2s)+X nearly degenerate with H +X
for large internuclear separation, the Coulomb
interaction would cause the energies to be quite
different for small separations. However, by
choosing X such that the potential-energy curve
for H +X+ lies above that for H(2s)+X, we
hoped to get a pseudocrossing of the potential-
energy curves' which would cause the reaction
H(2s)+X-H +X to have a high cross sec-
tion at a hydrogen-atom kinetic energy low
enough so that the reaction H(ls)+H +X would
have a low cross section. The potential-ener-
gy curve for H +X lies above that for H(2s)
+X for large internuclear separations provided
that the ionization energy of X is greater than
10.94 eV, but to produce a crossing of the po-
tential-energy curves at internuclear distance
at which a transition can occur readily, the
ionization energy of X must be a few electron
volts higher than 10.94 eV.

The apparatus used to demonstrate H pro-
duction from H(2s) is diagrammed in Fig. 1.
Protons produced in an electron-bombardment
ion source were separated from other ions by
a 60' sector magnet and were directed through
a one-inch-long cavity containing cesium in
equilibrium with its vapor. Metastable hydro-
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FIG. 1. A schematic diagram of the ex
apparatus.
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gen atoms were produced in this cell by the
reaction H +Cs-H(2s)+C + Th dr ' s . e density of

e y e tempera-cesium atoms was controlled b th
ture of the cell. Emerging from this cell were
protons and nan negative hydrogen ions in add'tion
to the neutral components H(2 )s~, and probably

(ls). The deflecting plates 4 7s, . cm long, fol-
lowing this cell were used t d flo e ect the charged
particles from the beam. A lm. n e ectric field of
700 V/m in the deflection region was adequate
to remove 1500-eV ions. A field of this stren

e on y about 1.5% of the metastabl
oms. When it was desired, a hi her

a e

, a ig er electric

th
ie applied to the deflection region q h d

e H(2s) as well as deflected the charged com-
components. The components of the beam re-
maining past the deflection region entered a
gas cell in which negative h dy rogen ions and

ive y rogenprotons were formed. The negative h d
e neutral andions were then separated from th

ac li
positively charged components of thns o e beamby
a cy indrical electrostatic analna yzer, and were

e ected by an electrometer circuit.
Thedatash ' ' . in eown in Fig. 2 were taken in the

followin wa:'
g y. The negative-ion yield was m

sured as a fu
was mea-

of 1100 V m
s a function of proton energy w th fwi a ield

/m between the deflecting plates. Thus
the char ed cog components were deflected, but on-
ly about 3.5% of the metastable atoms were
quenched. Thc e . he results are shown in Fig. 2 by
the curve marked A. (2) Th e negative-ion yield
was measured as a functio f'

n o proton or deuter-

deflectin
on energy with a field of 24 kV/ m between the

e ecting plates. Thus the charged particles
were deflected and the m t t ble as a e atoms were
quenched to the ground state so tha, t th
at least as m

a, ere were
as many ground-state atoms in the beam

enterin the ag e gas cell as the original number
of metastable atoms. The re lte resu s are shown
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FIG. 2. The yield of H when argon is in the
cell. Curve 4 is the frac '

is in e gas

H b all roc
raction of protons converted t

y p esses. Curve 8 is the fracti
rac e o

tons converted to H when the metastable atoms are
quenched before they ente th
t erefore re rh p esents an upper limit to the yield of H

from processes othes o er than collisions between H(&)
and Ar. The data re
gles are

represented by squares and t '

taken using deuterons instead of rotons
re n rian-

p o o alld
a e euteron energy so that at a

given abscissa
the same.

, protons and deuteron velo 't'oci ies are

in Fig. 2 by the curve marked B. B tho curve A

tern
n curve B were measured 'thwi a cesium oven
emperature of 90 C and a gas-cella gas-cell pressure

orr.
In assessin thg the usefulness of a reacti H 2

+X- H +X for aor a polarized negative hydrogen-
ion source, tmo points are of
(1) The i

re of crucial importance:
arge, i.e. , a sub-The yield of H must be larg

stantial fraction of the H(2s) atoms m
verted to H

s a oms must be con-
e o; and (2) the fraction of the H

beam that ressuits from reactions other than
H(2s)+X- H +X must b
shows that wit

mus e small. Figure 2
h with argon in the gas cell, the ne-

ative-ion ield fr
e , e neg-

that fr
yie rom H(2s) is much great ther an

or proton ener-om ground-state atoms f
gies less than about 1500 V F'
shows th

e . igure 2 also
s ows that for energies around 500 eV, about
0.1% of the ori inalg' protons were converted
to H viaH2s. At higher cesium oven tem-
perature and rn greater pressure of argon in the
gas cell, more than 0.5 /0 of the protons were
converted to H . Of the
best satisfiedb 'ed the criteria relating to yield and
selectivity mentioned above.
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Since intense proton beams can be produced,
and since it is unlikely that the nuclear polar-
ization would be disturbed by the collision of
H(2s) with argon, it is probable that a polarized
negative-ion source can be built with intensi-
ties in the microampere range.
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At very low atomic densities all Zeeman sub-
levels of an excited atomic state decay with
the natural radiative lifetime of that state.
Under these conditions the widths of the Hanle
effect and optical double-resonance signals
may be used to measure the lifetime of the
state. ' However, at higher atomic densities
the Zeeman sublevels can relax to each other
through collision and radiation trapping so that,
in general, (24+1)2 parameters are necessary
to specify the decay of the excited atoms. These
processes result in a broadening or narrow-
ing of the level crossing or optical double-res-
onance linewidths and can be ascribed to a change
in the lifetime of the excited atomic state. '&' In
most experiments the requirements of symme-
try reduce the number of different relaxation
times from (2J+1)' to (2J+1). Physically,
these are the lifetime of the excited-state pop-
ulation, the lifetime (7or) of the magnetic mo-
ment of the excited state (the "orientation"),
the lifetime (Tal) of the "alignment" of the ex-
cited state (an atomic polarizationwith zero
magnetic moment), and the lifetimes of other
quantities which describe the angular config-
uration of the excited atoms. In contrast to
classical nmr experiments where only the mag-

netic moment of the system is observed, an
appropriate choice of polarizations in level
crossing and optical double-resonance exper-
iments allows one to observe the lifetimes of
"orientation" and "alignment" separately.

For computational purposes it is most con-
venient to treat this problem using the density
matrix formalism. Then each separate mul-
tipole component p~~~ of the density matrix
decays with a characteristic lifetime. 4 The
"orientation" of the atoms is proportional to
p "', while the "alignment" is proportional
to p '" so that level crossing lifetime measure-
ments give 7al. With circularly (elliptically)
polarized exciting light, both p~'~ and p~ ~ are
excited, and with an appropriate choice of po-
larization for the detected light, 7.or can be
measured. 7

Under conditions where strong radiation trap-
ping is operative, Omont' has recently measured

Tor and Tal for the first Pj state of mercury.
His results are in good agreement with theoret-
ical calculations of Dyakonov and Perel. e In
this Letter we report on different values for
~or and 7al in the first 'P, state of lead where
the difference in ~or and Tal is caused by col-
lision effects rather than radiation trapping.


