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The purpose of this paper is three fold:
(i) to show the Lie group of Goebel's theory'
of strong coupling in static models; from this
group the bands of isobar states are obtained
as irreducible representations [they are of in-
finite dimension because the Lie group is non-
compact]; (ii) to give a. solution of the problem
for two simple cases [symmetric scalar and
symmetric pseudoscalar meson theory] by the
help of the method of group contraction; and

(iii) to indicate the possibility of higher sym-
metries. We will briefly sketch here the es-
sential part of the strong-coupling theory, which
serves as the physical derivation of the alge-
bra. Consider the scattering of a scalar me-
son by a static isobar: ' n" + "i"-"P"+ "j",
where e and g indicate the initial and final me-
sons, respectively, while i and j are isobar
states. The Chew-Low' equation for this pro-
cess is

k z k j p, k k p i k p j

+ (two or more meson intermediate states),

where Mz is the energy of the ith isobar and
A. (Az)~& is the matrix element of the source
of the meson n between the ith and jth isobar.
The parameter X represents the strength of
the coupling, the A~ being kept finite as the
strong-coupling limit (X'- ~) is taken. In the
strong-coupling limit all isobars are degener-
ate, M~-M +0(1/X'), and so we write Mi =M
+b, &/A. ', where 6~ is kept finite. The scatter-
ing amplitude is finite in the physical region
because of its unitarity property, so the pole
terms [first two terms in (1)] must be finite
in the strong-coupling limit. Expanding the

pole terms in powers of I/A. ', one obtains
~ ~

((u) --—([A,A ])Pa pole &u P' a

where matrix notation is used for A's and 6
is a diagonal matrix with Ai as the ith diagonal
element. To keep Tpole finite, in the strong-
coupling limit one must have

[A,A ] =0.
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This equation is equivalent to the coupling con-
dition of reference 1; it is a "bootstrap" con-
dition.

We suppose now that there is an invariance
group K (isotopic spin, for example), such that
the isobar states form a basis of a unitary rep-
resentation of K and the meson sources Az
also form one or more multiplets of the invari-
ance group K. In this representation space,
therefore, the A~ constitute a tensor operator
of the group K. Let Xi be the infinitesimal
generators of the group K. Then

[x.,x.]=-c.. x,
U

[x., A ]=D(t)

[A,A ] =0.

striction on gR also restricts the representa-
tions of G.

(1) Charge-symmetric scalar meson theory. —
In this case the relevant invariance group is
the isotopic-spin group K =SU(2). The meson
currents A ~ (o = 1, 2, 3) are assumed to be a
tensor operator of the adjoint representation
of K. Therefore, G=SU(2)xT, which is local-
ly isomorphic to the three-dimensional Eucli-
dian group.

In order to find irreducible unitary represen-
tations of G, we use the method of group con-
traction. 4 Consider the Lie algebra of SU(2)
SSU(2) defined by

[L &» L &»] =,~
~&r r

[L (2) L (2&] t~ L (2)
tl ~Ps W

[L &'&, L ('&]=0. (4)
The operators X; and A ~ form bases of the
Lie algebra G, while the operators A~ form
bases of the ideal T of G. Let G and T be the
corresponding Lie groups to G and T, respec-
tively, then G is the semidirect product of K
and T: G =K x T. Since T is abelian and G Q T,
G is noncompact. The basis of an irreducible
unitary representation of G is a band of isobar
states. The number of isobar states in a band
is infinite, because the unitary representations
of a noncompact group are of infinite dimension.

Assuming the scattering amplitude has the
form

T (~)= -p-iq where q = (~'—t), ')'~',

in the strong-coupling limit, the unitarity re-
lation can be written as

(II) is equivalent to the "isobar energy condi-
tion" of reference 1.

The representation of G must satisfy the Equa-
tions (II) for some Sit. It is not known to us
whether this is a real restriction on the rep-
resentations of G. In specific examples that
follow, we sha, ll only look for solutions of (I)
and (II) in which OR is proportional to the sec-
ond-order Casimir operator of K. This re-

and by comparing with Eq. (2) a,t e ~ 0 one ob-
tains (setting b, = 2 p, St )

(II.2)

If we set
' '+L "' andA =e(L "&-L &'&) (5)

Q Q Q a a P

and let e —0 keeping Az finite, we obtain the
Lie algebra G. By this contraction of the Lie
algebra we obtain an irreducible unitary rep-
resentation of G from a representation of the
SU(2) 8SU(2) algebra, . The irreducible repre-
sentation of the SU(2)m&SU(2) group can be spec-
ified by (l„l,), and the Casimir operators
of the group [L"']' and [L"']' have the well-
known eigenvalues for this representation [L(~&]'
= l, (l, +1), [L"']'=l, (l, +1). This representa-
tion can be reduced to the irreducible repre-
sentations of the isotopic-spin group

I' = t (t + 1) and t =
I l,—l, I, ~ - ~, l, + l, .

From (5) we obtain

4e [L ] =4e l, (l. +1)=A + 2@A I+a I .
2 (t) 2 2 2 —- 22

2 2

In order that A' is not zero (faithful represen-
tation), we must take l, —~, l, —~ keeping to
= ll,-l, l finite in the limit of e-0. In fact,
t p is given by the invariant operators of the
group G, A' and A I, namely t, = A I/2(A')'~'.
Therefore, the irreducible unitary representa-
tion of G is specified by tp, and it contains an
infinite number of irreducible representations
of the subgroup SU(2) of G, namely to, to+1,
~ e ~ 00

p ~

One finds that
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satisfies relations (II). Defining the coupling
constant by gs = +2A2 and using Mi =M +b.i/a'
we obtain

M(t) =
2 P, +M.t(t+1)

(8)

(2) Charge-symmetric pseudoscalar meson
theory. —In this case, the mesons interact with
the isobar in the P state, ' so that the sources
Azz are the tensor components of the adjoint
representation of the ordinary-spin group as
well as of the isospin group. Therefore the
structure of the Lie algebra (I) becomes

[I,I ] =i e I, [J,, J.] =i e. , J,n' n yy' i' j ijk 0'

[I,A. ]=ic A. , ['., A. , ]=ie. . Aa' i n y iy' i' nj ij ts ni'2'

[A. ,A, ] =0,

Let

O' =A. A. A, A.in jn jp i

OR = (aI'+ bJ')3/4 (Ps;

n1t1 n2~2 st 3 n4~42 2 2 2

= —2 (3n 1 + n 2
—Q'.3

—3a 4 ) ~

n1 ~1 n2 ~2 n3 ~3 n4 P4

= --,' ((5a,'+ 2n, '-n, '-4n, ')

+ 2 (n1nsns+ n1nsn4+ n1nsn4+ nsnsn4)'

where (P„g„and (P4 are the invariants of
[SU(2)8SU(2) ]x T, and are given by

(12)

(13)

where Greek and Latin indices run over 1, 2,
and 3 and refer to isospin and ordinary spin,
respectively. The Lie group G is [SU(2)SSU(2) j
XT9. It is now obvious that the irreducible
unitary representation of the algebra can be
obtained from those of SU(4) by the method of
contraction.

The representations of SU(4) can be speci-
fied by three integers (x„k„xs)which are giv-
en by the differences of four integers which
specify the representations of U(4) (l„l„l„l4),
where gi = lz -l4 (i = 1, 2, 3) and l1 - ls - ls ~ l4.
Let Cn be the nth-order Casimir operator of
SU(4) (& =2, 3, 4), whose eigenvalue is an nth
order polynomial of lz. Now let

cl. = n. +P e. .
2 2 2

(10)

Qj + CN2+ Q3+ A@ = 0~

++ ++ ++ -(P

Then if we expand z"Cn to first order in e as
we have done in Eq. (7), both in terms of n,
and Pi and in terms of invariants of [SU(2)SSU(2)]
xT9, we obtain the following relations:

then Eq. (II) is satisfied if

A. A. = —'(P 5, A. A. =-'(P 5ia jn 2ij' in i 2 np' (14)

and a+5 =1. Equation (14) relates the invari-
ants of the algebra

3 3 2 & 4 4 2

Under these restrictions we see that Eqs. (11)
have a solution

(lg = 3Q~ Q2 = H3 = Q~ = —Q~

P1= -2, Ps+Ps+tl4='-„

which gives the (~, A.„ks) representation of
SU(4) for the physically interesting irreducible
unitary representation of [SU(2)SSU(2)] x T„
where A., and A., are integers with x, & A. 3& 0.

To see the spin and isospin of the isobars
we must reduce the representation (~, a„as)
to the irreducible representations of SU(2)SSU(2).
A general method of this reduction has been
studied by Hagen and Macfarlane. ' An inter-
esting case' is (~, 0, 0), which gives the sequence
of SU(2)CASU(2) representations with t =j, i.e. ,
either (0, 0), (1, 1), ~ ~ ~, or (';, '-, ), (-', , —,), ~ ~ ~,
where (t, j) is a representation of SU(2)@SU(2).
The mass spectrum is given by

n, + n, + n, + n = -'[35','-2g ];

P1+P2+Ps+P4 = 0;

1~1 2t 2 st 3 4~4

2(3n1+ns as 3n4)i

M(t, j) = 3R/4gs[aj(j+ 1)+(1-a)t(t+1)], (16)

where a is arbitrary. [This is because both
terms yield the same form for Apn. ]

To obtain the Lie group G of strong coupling
(SU(2)xT, or [SU(2)IISU(2)]xTsj, we contract-
ed a compact group [SU(2)SSU(2) or SU(4)],
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Table I. Groups of strong coupling (SC) and intermediate coupling (IC).

Group of invariance
K

Group of SC
G

Group of IC
Compact None ompact

sU(2)
SU(2) (9 SU(2)
sv(2) 8 su(3)

sU(4)
su(6)

SU(2) xT3
[SU(2) SU(2)] xT9
[SU(2) SU(3)] xT24

Su(4) xT„
Su(6) T„

sU(2) (e su(2)
su(4)
su(6)

SU(4) SSu(4)
su(6) s su(6)

SL(2, C)
sI, (4,a)
SL(6,a)
SL(4, C)
SL(6,C)

but the signs of some structure constants of
the original group are irrelevant after the con-
traction (those structure constants that -0).
If we choose opposite signs, the original Lie
algebra would be noncompact. In other words,
it is possible to perform the contraction from
a noncompact group. In the previous examples,
we could have used SL(2, C) and SL(4, R) instead
of SU(2)SSU(2) and SU(4), respectively, although
the irreducible unitary representations of these
noncompact groups are hard to obtain in prac-
tice.

The strong coupling limiting process seems
to be related to the mathematical concept of
contraction. So, it would not be a bad guess
that in case of finite coupling constant the rele-
vant group may be a precontracted group, either
compact or noncompact, and we may regard
it as the "group of intermediate coupling" which
presents the higher symmetry of elementary
particles. Therefore, it is interesting to know
these groups for the more complicated cases.
In Table I we give the list of these groups.
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NEUTRON-PROTON CHARGE-EXCHANGE SCATTERING IN THE BeV/c REGION
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Several years ago we measured the n /elas--
tic charge-exchange cross section at 2.04 and
2.85 BeV.' The interesting result from this
work was the observation of a sharply peaked
angular distribution with a half-width at half-
maximum corresponding to a momentum trans-

fer of 150 MeV/c. This is half the width of the
Pp diffraction peak at these energies. The width
of the charge-exchange peak was found to be
momentum-transfer invariant and, therefore,
the 150-MeV/c width indicates that the differ-
ence between the T = 1 and T = 0 isotopic-spin-
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