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NEW INSTABILITIES DUE TO HALL EFFECT
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It is now well known that the inclusion of fi-
nite conductivity in hydromagnetic-stability
theory permits instabilities which do not oc-
cur in a perfectly conducting fluid. In the ter-
minology of Furth, Killeen, and Rosenbluth'
(hereafter referred to as FKR), fluid detach-
ment from the magnetic-field lines permits
the system to attain states of lower potential
energy which are not topologically a,ccessible
in the absence of dissipation.

From the mathematical viewpoint, the omis-
sion of resistivity reduces the order of the
differential equations involved. This may not
be valid asymptotic procedure in certain re-
gions, even though the dissipation may be very
small (just as the kinematic viscosity remains
important in the Prandtl boundary layer, in
the limit of large Reynolds number). In the
case of the resistive modes of FKR, E(r)
=k H(r) defines a singular hypersurface near
which resistivity is important, where k is the
wave number of the instability and H(r) is the
applied magnetic field.

On the other hand, it appea, rs that the inclu-
sion of ion-gyration effects ha, s not proven de-
stabilizing, ' ' whether or not resistivity is
also included. Coppi, ' in particular, has shown
that such effects may strongly reduce the growth
rates of the resistive modes, such as those
found by KFR.

Since introduction of the Hall effect does not
raise the order of the differential equations
involved in a stability analysis when finite con-
ductivity is also included, it is not surprising
that no new instabilities are found in this case.
What is perhaps surprising is that these effects
have not been noted to produce new instabili-
ties when the fluid is assumed infinitely con-
ducting. Roberts and Taylor4 did note a. new
mode, but it was a high-frequency oscillation.
We shall consider a simple situation in which
it appears that the Hall effect produces an ape-
riodic instability in a wave-number band which
was previously stable.

The situation chosen is similar to that first
considered by Kruskal and Schwarzschild, '
where an infinitely conducting plasma occupies
the half-space 0 &z & ~ and is supported against

gravity by magnetic pressure due to a jump
in field strength at the plasma. boundary z =0.
[(x,y, z) are Cartesian coordinates. ] In our
case we shall assume that the plasma exhibits
a significant Hall effect and that the seed field
H, = (H„O, 0) is uniform throughout all space.
The equilibrium equations are

~pa = pg~

E +(1/ne)ip =0,
e0

q(x, z, t) =qo(z) +q~(z) exp(wt+ikx),

so that only perturbations propagated along
the seed field and which bend the lines of force
are considered. The perturbation equations
are then

where

p(dug + V&g = s p,k'HOH~
&

1 1 0 1z'

&uH~ = ikHou~-i(kHO/ne) V XH»

V u=V H=O;

in the plasma, and

VxH= V' ~ H=0 (4)

in the vacuum, where u is the fluid velocity
and the unity subscript denotes a perturbation
quantity.

At the perturbed boundary, one has continu-
ity of both total pressure and normal field com-
ponent, together with a condition derived from

where g = (0, 0, -g) is the constant (vertical)
gravitational field, p, is the equilibrium fluid
pressure, pe0 is the equilibrium electron pres-
sure, n is the electron number density, e is
the electronic charge, and Eo is the equilibri-
um electric field. Assuming equal ion and elec-
tron temperatures so that pi =pe =-,'p, one may
consider that the hydrostatic pressure required
to support the plasma equilibrium is supplied
by the electric field.

The perturbed physical quantities are assumed
to be of the form
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Ohm's law in the assumed form'

]E+ p,uxH- —bxH+ —V'p =0.
ne ne e

It follows after differentiation with respect
to time that

(5)
( 2 'kl

p

there is stability for k & kc = pg/2 pH0'. When

~z is large but finite, however, for small real

1z
Pl-pg = 0~

H I ,=H t1x z = 0+ 1x z = 0

H
1

I p+ H] (

p

(8)
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N- 2kg-pgp 3 1

p co

D ~2k" ' -~—

In addition, the perturbations must be bounded
as Iz (

-~.
Elimination of u, between (1) and (2) yields

ikHO- - - ~ k'Ho')-'g xvxH, + 1~+ p ' lvxH, =().
ne '

I p&u ]
Hence, in the plasma

-kz -pz
H1 = C1 +C21z

(9)

where (without loss of generality) y is the root
with its positive real part being

kH &ne'
=k +

I (u+ p »i». ' (10)

while in the vacuum

kz
H =Ce

gk k apD = ——+ (g) + 2 JL(,
= p~

(d P(d

With the help of the x component of (1) togeth-
er with (3) and (4), from the boundary condi-
tions (6)-(8) one has a secular equation which
reduces to the dispersion relation

gk/(u —(u + 2 p, (k'H, '/p(u') (gk/(u)
k -gk/(d + (d + 2 p,k Ho /pQi D

The influence of the Hall effect may be seen
directly from dispersion relation (11). The
perfect conductivity limit of Kruskal and Schwarz-
schild7 corresponds to ion gyrofrequency ~2
=e pH0/m =ne pH0/p=~, where mf is the ion-

2 ™.
ic mass. At this limit, cp = ~ from (10), so
that

so that

Qg p 2k g
ne pHO' 2k-pg/pHO'

and there is stability for k &ke = pg/2 pH0'.
The introduction of the Hall effect thus permits

aperiodic instabilities in just that wave-num-
ber band for which there is complete stability
in the "frozen-in field" approximation. Refer-
ence to Eq. (9) shows that the inclusion of the
Hall effect means that the perturbed current
density 8, = V&H, is not zero throughout all
space as it would otherwise be, but falls off
exponentially with z. The current skin depth
defines the region in which the Hall effect is
important —where derivatives of the current
components and hence the first term of (9) is
signif icant.

In conclusion, it should be emphasised that
resistive modes are precluded, since Eq. (5)
is the form of Ohm's law adopted. Also, the
viscositylike finite gyroradius term in the equa-
tion of motion has been neglected, and this may
contribute additional effects. '
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