SPONTANEOUS EMISSION OF ENERGETIC He⁶ PARTICLES FROM Cf²⁵²[†]

S. L. Whetstone, Jr., and T. D. Thomas*

University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico (Received 12 July 1965)

We have observed what appear to be He⁶ particles spontaneously emitted from a Cf²⁵² source. This is the first observation, to our knowledge, of the spontaneous emission of particles (other than fission fragments) heavier than He⁴ from nuclei.¹⁻² Long-range alpha-particle emission from Cf²⁵² is well known. Energetic He⁴ particles are observed in coincidence with fission, and are believed to be emitted at the time of scission.³ The emission of $^{4-7}$ H³ and 5 H⁵ from Cf²⁵² has also been reported. Although it has not yet been shown experimentally that the emission of charged particles other than He⁴ is associated with fission, such a conclusion, from energy considerations, seems inescapable.

It appears probable that particles even heavier and of higher charge number than He^6 are emitted, although more rarely; in particular, we have found evidence for He^8 , lithium, and beryllium. The identification of these products is much less certain than that of He^6 , because of their relative rarity and the result of a control experiment with the Cf²⁵² source removed.

In our experiments we also clearly observe the emission of energetic H^1 and H^3 particles. The yield of H^2 is apparently much lower than those of its isotopic neighbors, in agreement with Wegner's observation.⁵ In our studies He^3 is masked to a large extent by dispersion from the relatively much more abundant He^4 .

The charged particles were detected in a ΔE -E counter telescope consisting of two silicon semiconductor detectors: a totally depleted " ΔE " detector, 47 μ thick, followed by an "E" detector, depleted to a depth of 400 μ . Aluminum foils, totaling 7.6 mg/cm^2 in surface density, prevented fission fragments and natural-decay alpha particles from reaching the detectors. Amplified pulses from the detectors were analyzed by a two-parameter pulse-height analyzer. A typical display is shown in Fig. 1, where the ΔE pulse height is proportional to the ordinate, and the summed pulse height $E + \Delta E$, to the abscissa of the two-dimensional plot. Particles that stop in the ΔE detector produce points that lie along the diagonal line corresponding to ΔE equal

to $E + \Delta E$. Particles that penetrate into the E detector must deposit less than their full energy in the ΔE detector and therefore produce points that lie below the diagonal line. The point of departure from the line and the locus of points for higher particle energy is dependent on the charge and mass of the particle and on the thickness of the ΔE detector. The loci for the various particles were calculated from the range-energy relations of Williamson and Boujot.⁸ Their results for He⁴ were extended to He⁶ and He⁸ by the customary assumption that the ratio of the range to mass is represented by the same function of the velocity for all masses of particles with the same charge. Our energy calibrations are based upon the response of the detectors individually to the 6.11-MeV natural-decay alpha particles from Cf²⁵² and the response of the amplifiers to a pulser.

The particles detected in greatest abundance are the long-range alphas. We have therefore used the points due to these particles to determine the actual thickness of the ΔE detector. The calculated loci for H^1 , H^3 , He^6 , and He^8 are shown on Fig. 1. For the 60-h run shown in Fig. 1 a fairly large number of events are observed along the locus for He⁶. A few events corresponding to particles of higher mass and/ or charge number than He⁶ are also seen in Fig. 1. The experiment was repeated with different ΔE and E detectors (including one $100 \mu \Delta E$ detector) with essentially the same results. A series of runs made with reduced gain to search for more highly ionizing particles than He^6 resulted in the detection of five events with the *E* versus $E + \Delta E$ characteristics of lithium (with masses between six and eight) and three events attributable to beryllium. These eight, especially energetic, events were accompained by approximately 10000 long-range alpha particles. A background run of comparable duration, with the Cf^{252} source removed, yielded one event (berylliumlike) in the region beyond helium, however. Therefore our evidence for the spontaneous emission of particles heavier or of higher charge than He⁶ is not conclusive.

FIG. 1. ΔE versus $E + \Delta E$ characteristics of particles emitted from Cf²⁵². The contour lines are drawn at 40 events (A), 80 events (B), 100 events (C), and 140 events (D). Dark shading indicates 20 or more events, light shading 10 or more.

The energy spectrum of He^6 particles detected is shown and compared with that of He^4 in Fig. 2. These data have been corrected for energy loss in the aluminum cover foil. Although the statistical uncertainties are large, it appears that the peak of the He^6 spectrum is at a lower energy than that of He^4 .

In this run 119 He⁶ events were detected, with energies above 13.5 MeV. Above this energy there were 8190 long-range alpha particles, giving 1.45 ± 0.13 He⁶ particles per hundred He⁴. Extrapolating our measured spectrum for He⁴ from 11.4 down to 1.5 MeV using the results of Nobles's measurement,⁶ we find the number of He⁶ (with energy greater than 13.5 MeV) per long-range alpha particle to be $119/11700 = (1.02 \pm 0.10) \times 10^{-2}$. This is a lower limit for the He⁶ yield. If the He⁶ spectrum is approximately symmetric about 13.5 MeV, the total yield of He⁶ relative to the long-range alpha particles is about 2×10^{-2} , or about 6 $\times 10^{-5}$ per fission.

The phenomenon of "channeling" in the passage of particles through crystalline materials can cause a small fraction of the particles to lose considerably less energy than expected in traversing the ΔE detector.⁹ This loss of pulse height from the ΔE detector is regained in the $\Delta E + E$ summed pulse height. As a result, for example, some of the relatively abundant long-range alpha particles are dispersed into the vicinity of the He³ locus, effectively

FIG. 2. Energy spectra of long-range He⁴ and He⁶ particles spontaneously emitted from Cf^{252} . Energies have been corrected for energy loss in the absorber foil. The spectra are shown only for energies high enough for the particles to penetrate to the *E* detector, so that the identification of the particle species is unambiguous.

masking these apparently rather rare particles. Evidence has also been reported in channeling studies for the occasional loss of somewhat more than the expected energy in a transmission detector.⁹ This effect or the Landau effect could conceivably disperse He⁴ particles into the vicinity of the He⁶ locus. Neither of these effects, however, to our knowledge, could produce the relatively clean separation between the He^4 and He^6 events that is obtained. The absence of any events immediately above the H^3 locus toward the He^4 locus is further evidence that the He^6 events we observe are real.

*On leave from Department of Chemistry, Princeton University, Princeton, New Jersey.

†Work performed under the auspices of the U.S. Atomic Energy Commission.

¹The detection of particles more ionizing than alpha particles in coincidence with induced fission has been reported. It is not clear that these particles are emitted from nuclei. See H. de Laboulaye, C. Tzara, and J. Olkowsky, J. Phys. Radium <u>15</u>, 470 (1954) for a review of this subject.

²The emission of Li⁹ from induced fission has been hypothesized, but the evidence is not conclusive. P. J. Bendt and F. R. Scott, Phys. Rev. <u>97</u>, 744 (1954).

³See, for example, E. K. Hyde, <u>The Nuclear Proper-</u> <u>ties of the Heavy Elements</u> (Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1964), Vol. III, pp. 131-140.

⁴J. C. Watson, Phys. Rev. <u>121</u>, 230 (1961).

⁵H. E. Wegner, Bull. Am. Phys. Soc. <u>6</u>, 307 (1961).

⁶R. A. Nobles, Phys. Rev. <u>126</u>, 1508 (1962).

⁷D. L. Horrocks, Phys. Rev. <u>134</u>, B1219 (1964).

⁸C. Williamson and J. P. Boujot, Centre d'Etudes Nucléaires de Saclay Report No. CEA-2189, 1962 (unpublished).

⁹C. Erginsoy, H. E. Wegner, and W. M. Gibson, Phys. Rev. Letters 13, 530 (1964).

Li⁴ AND THE EXCITED LEVELS OF He⁴[†]

Joseph Cerny, Claude Détraz,* and Richard H. Pehl

Department of Chemistry and Lawrence Radiation Laboratory, University of California, Berkeley, California (Received 16 July 1965)

There is a continuing interest in a characterization of such nuclei as H⁴ and Li⁴; in addition, a determination of the mass of either should aid in locating the lowest T = 1 state of He⁴, which is the subject of considerable current speculation. To accomplish this we have again¹ utilized the technique of simultaneous observation of (p,t) and (p, He^3) transitions to analog final states - here applied to the (T = 1) reactions $\text{Li}^6(p,t)\text{Li}^4$ and $\text{Li}^6(p, \text{He}^3)\text{He}^{4*}$. The latter reaction and the reaction $\text{Li}^7(p, \alpha)\text{He}^4$ also allow the investigation of the T = 0 states of He⁴.

Some of the recent data concerning the two lowest excited states of He^4 are summarized in Table I.²⁻⁸ Since state I ($\approx 20 \text{ MeV}$, probably 0^+ , T = 0) lies just above the *p*-*t* threshold at 19.81-MeV excitation and state II (≈ 22 MeV, probably 1⁻ or 2⁻, T = 0), above the *n*-He³ threshold at 20.58 MeV, their exact nature is uncertain. Besides these two states, Vlasov and Samoilov suggest⁹ the possibility that the lowest T = 1 state lies at 24 or 25 MeV. This would require Li⁴ to be unbound by 4.5 to 5.5 MeV.

We have used 43.7-MeV protons from the Berkeley 88-in. cyclotron to induce (p, t) and (p, He^3) reactions on Li⁶ and (p, α) reactions on Li⁷. Targets of separated isotopes were used; the general experimental setup was reported previously.¹

Figure 1 presents a $Li^6(p, t)Li^4$ spectrum