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tion before acceleration.

It seemed reasonable to assume that the de-
polarization occurred either in the inclined
field-acceleration tube® or in the center elec-
trode (“stripper”) of the accelerator where
the beam passes through a 75-cm-long gas-
loaded canal to remove both electrons from
the negative ions. The second possibility was
tested first. When the gas stripper was replaced
by a thin (~15-ug/cm?) carbon foil, a pronounced
increase in beam polarization was observed
(solid dots, Fig. 1). Under these conditions,
no depolarization seems to occur within the
accuracy (about +10%) with which the analyz-
ing power of the analyzing reactions is known.

For protons the polarization of the acceler-
ated beam can be measured much more accu-
rately than for deuterons because p-a scatter-
ing provides an accurate polarization analyzer.*
Measurements were made of the proton-beam
polarization for proton energies between 4 and
12 MeV. The polarization was found to be 0.46
+ 0.01 independent of beam energy if an unpo-
larized beam component of 10% resulting from
rest gas in the ionizer is subtracted. Because
of various small effects which reduce the po-
larization of the beam from the ion source we
would have expected a proton polarization of
0.47+ 0.01, provided no depolarization takes
place in the formation and the stripping of the
negative ions. It is therefore concluded that
with a foil stripper the polarization of the beam

after acceleration is 0.9873:% of the beam po-
larization at injection.

The depolarization observed with the gas
stripper suggests that the stripping of the ne-
gative hydrogen ions is a two-step process.

If this is the case, the proton polarization af-
ter the first electron is removed changes pe-
riodically between the initial value and zero
on account of the Larmor precession. Thus
the polarization is reduced by a factor two if
the second electron gets removed at a random
time equal to or larger than the Larmor pre-
cession time. Presumably the depolarization
can be removed by applying a magnetic field.
The above considerations also suggest that the
successive pickup and removal of electrons
that occurs when protons travel through mat-
ter is an important depolarization process in
those cases where the material traversed is
of low density.

*Work supported in part by the U. S. Atomic Energy
Commission.
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Several years ago, it was suggested that all
or part of the elementary-particle spectrum
may be simply a system of rotational rest-en-
ergy levels, and that the way to test this hypoth-
esis was to add to the Dirac or Kemmer or
other irreducible relativistic wave equations
an extra term, analogous to the Pauli term,
which represented rotational energy in a Lo-
rentz-invariant manner.! The requirement
that the resulting theory should correspond
to the relativistic classical theory of a symme-
tric top led to the free-particle wave equation

[iy WP +Mc -(in/4lc)y ou W]z/) =0, (1)
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where M and I are assumed to be constant pa-
rameters, y, = 711(7'#’ yy)s and J ., = ~ik(y I
+ F;w)' The operators y ,,,, ', satisfy the
commutation relations

r =
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Equation (1) couples the Poincaré group to the
internal quantum numbers of the spinning top
in a nontrivial way, but does not imply any

a priori assumption about isospin or unitary
symmetry.

The solutions of Eq. (1) have been examined
for the special case in which Y v FW were
Dirac or Kemmer operators.? In this Letter
we report some of the properties of Eq. (1)
when the y p are Dirac operators

yi:pzoi, Y4=p3! 7’5:‘91;
but the I' up are general spin operators which
satisfy Eq. (3):

(Togy Layy Tpp) =6(T+L7), (T Doy, Tap) =4(L-17),
LxT=iL, L'xTr=iL/, (L,T7)=0,
I2=1(1+1), L2=0'("+1), 1,1'=0,3,1,++-.

The spin is therefore the sum of three commut-
ing operators

T=n(35+L+1) (4)
reminiscent of the superposition of three

“quarks,” and the rest-energy operator is given
from (1) by

Hy=mc?pg[1 +a{(1 +p,)0- L+ (1-p,)0- L'}y = Ey, (5)

where m and 3 are related to the constants
M and I. For fermions, I’-/ is an integer,

and since it conserved even for p #0 we iden-
tify it with the electric charge.
Equation (1) defines a conserved current

a’)/pfb Where —J: Z/)+7’4774, and

(7741 YIJ'):O’ 774L:L 7747 TI4L :Ln4°
From (5), if ¢ is an eigenstate of H belonging
to the eigenvalue +E, it follows that p,n,¥ is
an eigenstate of H belenging to the eigenvalue

—E. The values of E? separate into two distinct
classes:

(E/mc?)?
(E/mc?)?

=1-a +2ad +0(a?), (6)
=1-3a-2aJ +0(a?), (7

as is evident from Fig. 1, which shows the rest-
energy trajectories (I’ =const.) derived® from
(5), as functions of J, for the choice m =m,
a=0.217.

The levels of type (6) consist of two rotation-
al bands characterized by J=7+7’+ 1. The high-
er of these has rest energies given by

(E/mc?®)?=(1 +2al)(1 +2al’).

It therefore begins on a spin-3 singlet (=0,
1'=0, @=0) and includes a spin-$ triplet with
Q=0,t1, The lower band of type (6) includes
a spin-{ doublet (/,7) =(1,0)(}, 3), @ =+1,0,
masses m(1-4a?)/? and m[a +(1-2a—-2a )“2]
respectively, and a spin-3 quartet with @ = -1,
0,+1, +2, together with the corresponding anti-

772 =172
e W 2
3_
5/2 —
> J=l+j’+|/2
- 1-0+2 [
J J=1=4+L'-1/2 13= -4
I3=l'-l-l/2/
3/2 7o v 1
PP Y, *u3s2)
I+ N
1/2 o Ta
a=0-27
-1 0 | 2 3
(E/m,c?)?

FIG. 1. Trajectories of J against E? for generalized Dirac equation (5) with a=0.27.
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Table I. Quantum numbers for generalized Dirac equation, J=1/2,3/2.

I J 1 forJ=1/2 Q=1"-1 1 +1 Particle 1 for J=3/2 Q=1"-1 ' +1 Particle
0 1+1/2 0 0 0 A 1 -1 1 v~
1/2 1+1 1/2 0 1 Y *0
1 1/2 0 1 n 3/2 -1 2 N3p'~
1 1+3/2 0 1 1 Yot
1+1/2 0 1 1 b 1 0 2 Ngs*?
3/2 1+2
1+1 1/2 1 2 Nyp*™
2 1+5/2
1+3/2 0 2 2 N3yt

particles. The above choice of the two param-
eters m,a brings the masses of these states
into reasonable agreement with the A, Y, *,n,
p,Ng,,*. There are no states of type (6) below
the np. The branches of type (7) have imagin-
ary mass or mass small compared with the
np. The “missing” I’ =0 trajectory is one of
these, since it includes a state /=1, @=-1,
J=1%, mass m(1-4a)'/2,

The quantum numbers derived for the above
baryons are listed in Table I. For B =+1 they
are related to more familiar quantum numbers
as follows:

J-21-1=Q-S-1=Q-Y
J=21'-1=—(Q+S+1)=—-(Q+Y)
1'-1=3Y +1, ) (8)
I'+1=3Y+1
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Hence the isospin is simply the maximum value
of I =3(-I,). For B=-1, Iis the maximum
value of I’ = 3(I +1,).

Charge conservation in any transition from
one particle state to another may therefore
be expressed by the selection rule

Al-Al'=gq, 9)

where ¢ is the charge of the emitted particle,
and the selection rule for strong interactions
in which a boson of strangeness S is emitted

by a baryon may be expressed thus:

AJ-A(+1") =S, (10)

where AJ is the increase of the intrinsic spin

of the baryon. Assignment of quantum numbers
'=3(S+q),1=%(S—q) to the emitted bosons then

leads to the over-all selection rule 3AJ = Al’

=Al. Analysis of the generalized Kemmer equa-

5/72

3/2
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FIG. 2. Lines of constant J—I and S. Empty boxes represent expected states.
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tion, in which the Yy in Eq. (1) are Kemmer
operators, similarly leads to rotational bands
J=l+1"£1,1+1’, etc.

It is evident that use of an energy term pro-
portional to J(J+1) to phenomenologically de-
scribe “rotational bands” of elementary-par-
ticle spectra is misleading. Calculated rela-
tivistically, the rotational levels have a much
more complex structure and admit widely se-
parated mass values as well as closely spaced
multiplets. The difference between the rela-
tivistic and nonrelativistic theories becomes
significant when the radius of the rotating par-
ticle is no longer large compared with its Comp-
ton wavelength. The main feature of the rota-
tional spectrum of such a particle is the fact
that both J-7 and S are constant along each
energy-level trajectory. To see if this is a

general property of baryon energy levels, in
Fig. 2 we have plotted the observed spectrum
on the same graph as Fig. 1 and drawn lines
of constant /-7 and S, although some of the

J values, in particular that of N,,,*(1560), are
not firmly established. If states correspond-
ing to the empty square boxes are found, there
may indeed be a fundamental significance to
such trajectories.

*Work supported by the Office of Naval Research and
the Thompson Ramo Wooldridge Space Technology Lab-
oratories Independent Research Program.
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The internal-symmetry group for baryons
and mesons, which is only broken by electro-
magnetism and weak interactions, is

§,=BIY®SU(2),

where B and Y correspond to baryon number
and hypercharge gauge groups and SU(2); to
the isospin group. In the eightfold way, one
looks at a larger group
$4 =B®SU(3)I, v’
which includes G,, but is broken by more in-
teractions than is G,.! The group of invariance
of the eightfold-way theory, including space-
time properties, is thus
= = ®
G1 g1®£ B®SU(3)I,Y L,
where £ is the Poincaré group. A useful sub-
group of G, is
=B® ®SU(2
G, =B SU(S)I’Y sU@)
where SU(2)s is the SU(2) group of angular mo-
mentum. Recently Glirsey, Pais, Radicati,
and Sakita proposed an SU(6) symmetry, which
contains G, and is broken by more interactions
than is g, symmetry.? The group in question

is
S B®SU(6)I,Y;J'

This “marriage” of the internal properties
isospin and hypercharge with space-time prop-
erties of angular momentum has been very
successful. In this way one has through the
introduction of a succession of higher symme-
try groups succeeded in providing a unified de-
scription of the spin, isospin, and hypercharge
properties of hadrons. Here we wish to pro-
pose an SU(9)-symmetry model for baryons and
mesons in which we extend the fusion achieved
in g, one step further to include the baryon
gauge group B.

The SU(9) group has 80 generators AV with
pyv=1,2,+++,9 and 25, A, A =0 satisfying the
commutation rules

=6, A =6 A . (1)

We shall also give our identification of some
physical operators.

. i j+3 j+6
SU(3)I,Y' Az’ +Az' +3 +Az 6 (2)
i,j=1,2,3;

271



