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The recent interest in dissipative effects in
type-II superconductors has pointed up the need
for two-fluid equations which are nonlinear in
the velocities and describe the motion of the
normal electrons without the contradiction en-
countered in the London theory. ' The purpose
of the present Letter is to give the phenomeno-
logical equations of motion which are obtained
from Eckart's' variational principle as applied
to the two-fluid model of a superconductor. The
derivation follows closely that used by Zilsel'
to obtain the two-fluid equations for liquid-he-
lium II, but with the addition of the electromag-
netic terms; it differs from Cook's derivations
of the London equations from Eckart's princi-
ple in that it includes the normal electrons.
The resulting equations yield a source term
for the normal electrons and the explicit form
of the osmotic-pressure term suggested by
London' and recently applied to extreme type-II
superconductors by Vijfeijken and Staas. '

Eckart's principle assumes that the dynam-
ics of a continuous system are such that

6f 'f2d'rdt =0, (1

where is the Lagrangian density in a given
region whose boundaries are fixed. There is
considerable evidence that this variational prin-
ciple, which is more restrictive than Hamilton's
principle, gives the correct description of su-
perfluids. The Lagrangian density is assumed
to be'
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and superfluid mass fractions and Vn and Vs
are the normal and superfluid velocities. S
is the entropy and ~ is the internal energy,
both per unit mass. 4 and A are the scalar
and vector potential and e/m is the charge-to-
mass ratio of the carriers. Equation (1) is
to be restricted by conservation of mass (which
for electronic carriers also implies conserva-
tion of charge) and conservation of entropy:
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Equation (4) also contains the assumption that

entropy is carried only-by the normal electrons.
Conservation of entropy is slightly relaxed later
by including a linear frictional force in the nor-
mal fluid equation. Lin's constraint, which is
necessary for a classical fluid, and which Whit-
lock' used to derive the one-fluid plasma equa-
tions, is assumed not to apply to a quantum fluid
where the particle trajectory is not a defined con-
cept. The variational principle with these two
constraints is therefore
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Var iation with respect to p S x Vn Vs 4 A

lead to the following relations:
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Here x = p~/p and 1—x = ps/p are the normal
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6V: V + (e/mc)A+ Vo. + (S/x)vP = (), (9)

If we eliminate the Lagrange multipliers, n
and P, from Eqs. (6) through (10), we obtain
the equation of motion of the superfluid,

BV /Bt+V(V '/2) =-Vp/p+SVr+(x/2)V IV -V I'
s s n s

-(e/m)[VC + (1/c) BA/Bt]. (13)

The equation for the normal fluid is also ob-
tained from Eqs. (7), (9), and (13), with the
additional assumption of a frictional force,
Ohm's law. Following Zilsel, the normal fluid
equation contains a source term I", which is
the rate of production of normal fluid mass/
unit volume.
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Actually, the pressure p can be disregarded
as compared with the electric field for distances
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Equations (11) and (12) lead to Maxwell's equa-
tions, and from the curl of Eq. (10) we obtain
the first London equation

vxV -(e/mc)B=0.s

large compared with the Debye screening dis-
tance. '

Equations (13) and (14) avoid the inconsisten-
cy of the London treatment of the normal elec-
trons. Thus the London equations for BV~/Bt
=0 give an electric field E = (m/e)V(Vs'/2),
which (assuming the normal electrons obey
Ohm's law J = v&E) implies dissipation when-
ever there is a gradient in the superfluid cur-
rent density, as in screening currents in the
penetration depth. That there actually is no
such dissipation follows from the existence of
persistent currents and the Meissner effect.
This contradiction is removed by the terms
in Eqs. (13) and (14) containing Vi V —V I',
which provide a balancing force to prevent gra-
dients of the superfluid velocity field from ac-
celerating the normal electrons.

Equations (13) and (14) also imply the possi-
bility of thermal counterflow, second sound,
a thermoelectric potential analogous to the
fountain pressure of liquid-helium II, and a
Hall effect of the normal electrons. Presum-
ably these effects could only be observed if
the scattering of normal electrons by the lat-
tice is very small.
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