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We have observed unusual nonlinear interac-
tions among "solitary-wave pulses" propagat-
ing in nonlinear dispersive media. These phe-
nomena were observed in the numerical solu-
tions of the Korteweg-deVries equation

u +uu +du =0.
t x xxx

This equation can be used to describe the one-
dimensional, long-time asymptotic behavior
of small, but finite amplitude' . shallow-mater
waves, ~ collisionless -plasma magnetohydr o-
dynamic waves, ' and long waves in anharmon-
ic crystals. ~ Furthermore, the interaction
and "focusing" in space-time of the solitary-
wave pulses allows us to give a phenomenolog-
ical description (some aspects of which we can
already explain analytically) of the near recur-
rence to the initial state in numerical calcula-
tions for a discretized weakly-nonlinear string
made by Fermi, Pasta, and Ulam (FPU).'»'

Spatially periodic numerical solutions of the
Korteweg-deVries equation were obtained with
a scheme that conserves momentum and almost
conserves energy. For a variety of initial con-
ditions normalized to an amplitude of 1.0 and
for small 5', the computational phenomena ob-
served can be described in terms of three time
intervals. (I) Initially, the first two terms of
Eq. (1) dominate and the classical overtaking
phenomenon occurs; that is, u steepens in re-
gions where it has a negative slope. (II) Sec-
ond, after u has steepened sufficiently, the
third term becomes important and serves to
prevent the formation of a discontinuity. In-
stead, oscillations of small wavelength (of or-
der 5) develop on the left of the front. The am-
plitudes of the oscillations grow and finally
each oscillation achieves an almost steady am-
plitude (which increases linearly from left to
right) and has a shape almost identical to that
of an individual solitary-wave solution of (1).
(III) Finally, each such "solitary-wave pulse"

or "soliton" begins to move uniformly at a rate
(relative to the background value of u from which
the pulse rises) which is linearly proportional
to its amplitude. Thus, the solitons spread
apart. Because of the periodicity, two or more
solitons eventually overlap spatially and inter-
act nonlinear ly. Shortly after the interaction,
they reappear virtually unaffected in size or
shape. In other words, solitons "pass through"
one another without losing their identity. Here
we have a nonlinear physical process in which
interacting localized pulses do not scatter ir-
r ever sibly.

It is desirable to elaborate the concept of the
soliton, for it plays such an important role in
explaining the observed phenomena. We seek
stationary solutions of (1) in a. frame moving
with velocity c. We substitute

u =?T(x—ct)

into (1) and obtain a third-order nonlinear or-
dinary differential equation for u. This has
periodic solutions representing wave trains,
but to explain the concept of a soliton we are
interested in a solution which is asymptotical-
ly constant at infinity (u =u at x =+~). The
result of such a calculation is

u =u + (u, —u ) sech'[(x —x, )/AI, (2)

where u„u, and x, are arbitrary constants
and

a = r[(u, —u )/12j-"',

c=u +(uo-u )/3.

Thus, the larger the pulse amplitude and the
smaller 6, the narrower is the pulse. The sur-
prising thing is that these pulses, which are
strict solutions only when completely isolated,
can exist in close proximity and interact with-
out losing their form or identity (except mo-
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mentarily while they "overlap" substantially).
The numerical calculations in which these

phenomena were observed were made starting
with 5 =0.022 and the periodic initial condition

u I, = cos~x.

Thus, initially, max)6'u I /maxluu 1=0.004
so the third term can be neglected and we are
dealing with the equation u~+uu~ = 0. Its solu-
tion is given by the implicit relation

u = cosm(x-ut), (6)

and we find that u tends to become discontin-
uous at x= 2 and t =T&--1/w, the breakdown
time. Figure 1, curve A. , gives the initial con-

FIG. 1. The temporal development of the wave form
I{x).

dition, and curve B shows the function at T@.
The slight oscillatory structure for x & 2 is due
to the third derivative which we have neglect-
ed in arriving at the approximate solution (6).
Curve C at f, =3.6T& shows a train of solitons
(numbered 1-8), which have developed from
the oscillations. A so-far unexplained proper-
ty of these solutions is the linear variation of
the amplitude of the largest pulses. Table I
gives the amplitudes of the pulses, their ob-
served and calculated widths [Eq. (3)], and their
observed and calculated velocities [Eq. (4)].
We note that the calculated and observed widths
and velocities of the first seven solitons are
in very good agreement.

Figure 2 gives the space-time trajectories
of the solitons. The vertical axis is normal-
ized in terms of the recurrence time TR (TIt
=30.4T& for this computation), which is the
time it would take all the solitons to overlap
or "focus" at a common spatial point. The dia-
gram at the right of Fig. 2 shows the amplitude
of soliton no. 1 (horizontally) versus time (ver-
tically). The observed velocity of each soliton
given in the table is calculated as the slope of
the straight line drawn tangent to its trajectory
over the time interval 0.0975T& to 0.133T&.

When solitons of very different amplitude ap-
proach, their trajectories deviate from straight
lines (accelerate) as they "pass through" one
another. During the overlap time interval the

Table I. Soliton properties —observed and calculated values (4 = 0.022, t = 3.6I~).

Pulse
no.

Amplitudes
{observed)

00 Q
()
—g~

Widt g)
observed calculated

Velocity (c)
observed calculated

325
401
491
544
574
584
558
453

1739
1597
1485
1318
1115

885
610
302

0.0455
0.0475
0.0492
0.0522
0.0567
0.0636
0.0769
0.099

0.0456
0.0476
0.0493
0.0516
0.0568
0.0639
0.0767
0.109

227
110

0
-99

-169
—273
—361
-443

254
131

4
-105
-202
—289
—354
-353

The observed quantities (excluding c) are obtained from the numerical values of u and u at t = 3.6I'& (Fig. 1,
curve C). uo is the observed maximum of each pulse; uo —u (and therefore u ) and h, obs are obtained from the
minimum value of uz~.

= (24tI minu 1, )obs XX X —Xo

u —u =126 /b,
0 obs '

The observed values of c are obtained by measuring slopes on Fig. 2 at t = 3.51'~ = 0.115'&, as described below.
The calculated values of 4 are obtained from Eq, (3) with 6 = 0.022 and (uo-u ) obtained from column 3. The cal-
culated values of c are obtained from (4) with u and {uo-u ) obtained from columns 2 and 3.
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FIG. 2. Soliton trajectories on a space-time diagram
beginning at t = 0.1T~ = 3.047'&. The diagram at the
right shows the variation of the amplitude of soliton
no. 1 as a function of time.

joint amplitude of the interacting solitons de-
creases (in contradistinction to what would hap-
pen if two pulses overlapped linearly). This
is evident at t = TIt/6 where solitons 1 and 7,
2 and 8, and 3 and 9 overlap. When the ampli-
tudes of approaching solitons are comparable
they seem to exchange amplitudes and there-
fore velocities. They do not have to approach
very close to one another for this "transition"
to occur. This is evident at t =T&/4 where sol-
itons 1 and 5, 2 and 6, 3 and 7, and 4 and 8
overlap (and similarly at t = T&/3, etc. ). In
general, when solitons approach we have re-
placed the solid lines (odd-numbered solitons)
and dashed lines (even-numbered solitons) by
dots, as it is not yet clear how to describe what
happens during a close interaction. At t =0.5TR
all the odd solitons overlap at x=0.385 and all
the even ones at x = 1.385, and because of the
nonlinear interaction one cannot follow the crests,
and so the regions are circled. The waveform
of & which results is mostly composed of, and
has the form of, the second harmonic of the
initial wavefor m.

In conclusion, we should emphasize that at

T& all the solitons arrive almost in the same
phase and almost reconstruct the initial state
through the nonlinear interaction. This process
proceeds onwards, and at 2T& one again has
a "near recurrence" which is not as good as
the first recurrence. Tuck, ' at the Los Alamos
Scientific Laboratories, observed this phenom-
enon as well as eventual "superrecurrences"
in calculations for a similar problem. We can
understand these phenomena in terms of soli-
ton interactions. For t & T~ the successive
focusings get poorer due to solitons arriving
more and more out of phase with each other
and then eventually gets better again when their
phase r elationship changes. Further mor e, be-
cause the solitons are remarkably stable enti-
ties, preserving their identity through numer-
ous interactions, one would expect this system
to exhibit thermalization (complete energy shar-
ing among the corresponding linear normal
modes) only after extremely long times, if ever.

The authors would like to thank G. S. Deem
for assistance in programming and reducing
the numerical data.
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6We restrict ourselves to solutions of (1) periodic
in x with period 2 so that we need only consider the
interval 0-x & 2 with periodic (cyclic) boundary condi-
tions. For numerical purposes we replaced (1) with

u, =u. —3(k/h)(u. +g. +g )(g —g )i+1 i i-1 i+1 i-1

-(~ k/~ )(u. -2&. +2&.
2 3 j j j j

z+ 2 g+ 1 $-1 s-2

i=o, 1, '', 2N-1,
where a rectangular mesh has been used with temporal
and spatial intervals of k and h = 1/N, respectively.
That is, the function u(x, t) is approximated by ui~
=u(ih, jk). In performing the calculations we used

242



VOLUME 15, NUMBER 6 PHYSICAL REVIEW LETTERS 9 AUGUsT 1965

periodic (cyclic) boundary conditions u 2=u.4+ 2IV
The momentum

2N-1

i=0

is identically conserved, for if one sums both sides of
the equation with respect to i, then the quantities mul-
tiplied by 0 vanish identically, The energy

2N-].
x( 2)~

2i=0

is almost conserved, that is, the above quantity is in-

variant if we neglect terms

2N-1
(k2/6) P u. (u. ) +O(k4).

i i ttta=0

This is evident if we replace (ui~ -uz& )/2k by»~/
Bt, multiply through by u, and sum. In practice,
those runs which are numerically stable conserve the
energy to five significant figures. The details of nu-
merical computation and analysis will be published in
the near future.

See reference 2, p. 18 for a similar calculation
with u = 0.

J. Tuck, private communication,
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