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In ordinary electromagnetic theory, total
charge remains exactly constant for any sys-
tem surrounded by source-free space. This
is a direct consequence of Maxwell’s equations
for the free-space region, whereas dipole and
higher moments can be carried away by elec-
tromagnetic radiation. In gravitational theory,
analogs of this conserved charge would, at first
sight, appear to be mass, momentum, and an-
gular momentum, as they are indeed exactly
conserved in the linearized Einstein theory,
for regions surrounded by empty space.!»?
However, in the full nonlinear theory mass
and momentum can be changed (i.e., “carried
away”) by gravitational radiation.3"® It has
therefore been commonly believed that there
are no (nontrivial) exactly conserved (covari-
ant) gravitational quantities in general relativ-
ity. But it turns out that, quite unexpectedly,
there is a set of 10 geometrical quantities, de-
fined for asymptotically flat space-times, which
have a quadrupole structure, and whose values
cannot be altered in any way by gravitational
radiation.

For a general asymptotically flat space-time® ¢
the quantities can be expressed as integrals
at infinity on any null hypersurface @ which
diverges to infinity. Using the notation of New-

man-Unti,?" these expressions are
- 1 :
Q, =/, o g, Sin6d0AE,
m=-2,-1,0,1,2. )

Here ¥ ' is defined by —CpolHmYIPm%=¥¢

=¥ 3 +¥ y~%+0(r~7), where v is an affine
(or luminosity) parameter, with (IK,nl, mH, mH)
as standard null tetrad, on 9, such that »*(d6?
+sin®0d?) defines, for large », the metric

of the “sphere at infinity” on 9 (¥,°, ¢! are
independent of »). The quantities 2Y2, m are
effectively “tensor” spherical harmonics? de-
fined in terms of the ordinary harmonics Y3 ,y,
by
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2Y2, m- <Smeﬁ +Z§<}>(sin9 36 "sin% @)YZ, m’
The real and imaginary parts of the five com-
plex quantities @, are the required conserved
quantities. Together they constitute a repre-
sentation D (2, 0) of the homogeneous Lorentz
group [of conformal motions of the (6, ¢) sphere].*
They are conserved in the sense that if space-
time is empty near infinity and if 9’ is any oth-
er null hypersurface diverging to infinity, then
the new values of @y, will be the same as the
old, the 6, ¢ for M’ being carried over from
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those for 9 in the standard way, i.e., by the
“supertranslation” of % into M’.3* Thus, the
Q,,, also form a D(2, 0) representation® of the
full Bondi-Metzner-Sachs group.®*° This as-
sumes that 9 and 9’ both open out into the fu-
ture, so that outgoing gravitational radiation
might escape between them. We could also
define 10 additional conserved quantities by
using (1) on null hypersurfaces which open out
into the past. These would, in general, be dif-
ferent from the above @,,, but the fact that
they are conserved would seem to be of lesser
interest, for retarded fields.®

It may be asked what is the interpretation
of (1) in the linearized theory. Again the @,
would be conserved, but in this case we must
interpret (1) as representing the presence of
incoming radiation (assuming 9 opens into the

future). It can be shown that (1) in fact vanishes

for all retarded fields in the linearized theo-
ry. It would be natural, therefore, to attempt
to interpret (1) in terms of incoming radiation
in the full theory also. However, it is here
that the full theory presents us with an essen-
tially new situation. As it stands, (1) does not
represent incoming radiation alone. This is
brought out most clearly by an examination

of the static and stationary vacuum fields. In
such cases incoming radiation is absent (ac-
cording to any reasonable definition!), but the
@,, can be expressed as certain combinations
of mass, dipole, and quadrupole moments.
For, if in (1) we replace ¥ ! by

-5 00,0+ (10/3)(¥,°)2, (2)

the field being stationary, and we choose 3

(as we now may) so that the leading term ¢°

in the shear vanishes, then it turns out that
the same @,, are still obtained. Here ¥,°is
real, constant, and represents the total mass;
¥,% ¥ % are complex functions of § and ¢ de-
scribing, respectively, dipole and quadrupole
structure of the source.®? [Expression (2) has

a quadrupole angular structure and is now equiv-

alent to the @,,,.] In the case of the Weyl-Levi-
Civita solutions only @, survives and is real,
but it does not vanish in general, i.e., unless
the particular combination of moments given
by (2) vanishes.

This leads to a remarkable state of affairs.
Suppose an initially asymmetric body [with (2)
nonvanishing] becomes spherically symmetric
at a later time. In the meantime it must radi-
ate gravitationally and the quantity (2) may
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change, but if the system is ever to become
stationary again, the combination of moments
(2) would have to return to its original value!
It appears that we must interpret this in terms
of back-scattering of the gravitational waves.
Thus, during the radiative period, (1) repre-

sents not only a multipole structure of the source,

but, in addition, a part apparently correspond-
ing to incoming (i.e., scattered) radiation which
would destroy the stationary nature of the field
of the body —unless and until the original val-
ues of (2) are regained! That incoming radia-
tion can contribute to the @,, is clear from
the results of the linear theory.

It should be mentioned here that while the
@, determine a selection rule for purely grav-
itational transitions between stationary states,
in the presence of electromagnetism (or neu-
trinos) the @, are no longer conserved. (It
is conceivable that this has relevance to grav-
itational collapse, since a transition which can-
not be accomplished by gravitational radiation
alone might take place electromagnetically!)
However, when electromagnetism is present,
six new exactly conserved quantities emerge,
namely the analogs of (1) for the Maxwell field.
They have a dipole structure and depend on
the »—* part of the Maxwell field; they appar-
ently do not necessarily vanish for stationary
fields and they are conserved in asymptotical-
ly flat space-times if the Einstein-Maxwell
equations hold near infinity. (Also there are
four or eight conserved quantities for neutrino
fields.)

Full details of these results, with proofs,
will appear elsewhere.
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In optics we are concerned with a source,
the field, and the interaction of the field with
given systems. These systems usually include
a detector and a—generally unavoidable —dis-
sipation mechanism. For simplicity of termi-
nology, we refer to all of these systems as
the “detector”; the interaction of the field with
the “detector” is the interaction under consid-
eration. The concepts and formalism of quan-
tum optics are greatly simplified by the follow-
ing theorem:

All sources on which the effect of the “detec-
tor” is negligible may be treated as classical
sources in the interaction under consideration.
As a corollary of this theorem, we have:

The field acting on a quantum-mechanical
system —when the sources are of the above type
—consists of the superposition of a classical
field and the “vacuum” field. The term “vacu-
um” field refers either to the true vacuum field
in the absence of dissipation, or to the field
due to the zero-point (and thermal, if pertinent)
fluctuations of the dissipation mechanism, which
replaces the true vacuum field,'>? in the pres-
ence of dissipation. It should be noted that the
total field referred to in the corollary is fully
quantum mechanical.

The proof of the theorem is based on the con-
nection between the quantum-mechanical (as
distinct from classical) properties of a system
and the measurability of these properties. The
essential difference between a quantum-mechan-
ical and classical system may be described
by the statement that a (ideal) measurement
will disturb the former but not the latter. If
certain measurements performed on a system
do not disturb it, the behavior of the system
with respect to these measurements may be
regarded as prescribed, and described by a
¢ number. (This description may, of course,
be statistical, utilizing a statistical—but not
quantum-mechanical—ensemble.) Our hypoth-
esis, that the effect of the “detector” on the
source is negligible, implies that the distur-

bance of the source by measurements made

by the “detector” are negligible, and therefore
the nonclassical properties of the source, as
far as the interaction under consideration is
concerned, are negligible.

Specifically, let us consider a mode of the
electromagnetic field to which both the source
and detector are coupled. Let us also separate
(conceptually) the dissipation mechanism from
the “detector” and consider it, henceforth, as
a separate system. (We assume that this is
the only significant dissipation associated with
the mode under consideration; that is, the source
contribution to the dissipation is negligible.)
With some approximations based mainly on
recognition of the fact that the usual dissipation
mechanism, described by a dissipation constant
B, is a linear system, it has been shown's? that
the coordinate and momentum of the radiation
oscillator of frequency w are given (for 8 < w)
by

g =[*_dt,[aS(,) +yD () +F(t,)]

Xe‘%ﬁ(t_tl) cosw(t~t,), (1)

p@) == [ at[aSt,) +yD @) +F ()]

1

we P Goueer), (@)
where o and y are coupling constants, S, D,
and F are the dynamical variables through which
the source, detector, and dissipation mecha-
nism, respectively, couple to the mode,® and
the units of ¢ and p are dimensionless. We
can write

q(t)sqs(t)+qD(t)+qF(t), (3)
pE)=pg) +p ) O) +0 ), (4)

in obvious notation. Now ¢g, ¢p, and g de-
pend only on the dynamical variables of the
respective systems to which they refer. (B is
assumed to be a known constant.) Since non-
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