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to obtain

n+n —n+n

where

= [(n, +n, ) —n, + n, )],exp( —K„,t), (7)

K,o, (T) = 6P«.

In this case the anisotropy is proportional to
[(n, +n4) —(n, +n6)] so that (7) constitutes a de-
rivation of (1) for series-II experiments. Thus,

K (T) 2 1P„
Kazoo(T) 3 3 P60'

Since P„and P«are both -0, it follows from
(9) that [Ki„(T)/Ki«(T)] ~ -', . From the data of
Fig. 2 we find that (Kii, /Ki«) = 0.65 + 0.02, and
is temperature independent, from which we
conclude that P~ is effectively zero and P«
= (1.0 &10 ) exp( —E/kT) sec, where E = 0.273
eV. Thus, the results indicate that V~ reori-
entation takes place almost exclusively through
jumps to a new site at 60 to the original site.
The fact that P~ = 0 indicates that reorientation
occurs through one-step jumps in which only
one of the two halides constituting the V& cen-
ter is changed. (If a, migratory motion occurred
in each jurnp the recapture site should be ran-
dom, with P«=P«. ) We note that in the lat-
tice of VK sites (midpoint between two adjacent
halides), the first nn positions to a given VK
site are oriented at 60' to the axis of the ref-
erence site; the second nn positions are ori-

ented at 90'. The preferred reorientation is
therefore to the first nn site. It may also be
noted that the closest site having the same ori-
entation as the reference site is a fourth nn

position.
The experiments reported here do not provide

information on the total jump frequency of V&
centers, as a jump to a new site of the same
orientation (frequency P, ) cannot be observed
in anisotropy measurements. However, the
quantity 4P«must represent a lower limit,
as the total jump frequency would be given by
Pp + P9p + 4P6p Pp + 4P«. At 100'K, 4P« is of
order 1 sec ' and, at 110'K, 4P« is about 10
sec ~. On the basis of 60' jumps only, the V~
center would be moving several lattice sites
per second in this temperature region. It is
known'&' that Vg centers in KI become thermal-
ly unstable (lifetime of order seconds) at about
105-110'K, so that the migration of V~ centers
can be accounted for reasonably by 60' jumps
only. This argues that P, is at most compar-
able to 4P«, but is not much greater. It is,
of course, possible that P, 4P«.
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CHANGE IN THE CRYSTAL STRUCTURE OF SOLID NORMAL HYDROGEN NEAR 1.5'K*
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We have recently observed an effect in the
infrared absorption spectrum of solid normal
hydrogen which provides evidence that the crys-
tal structure of hydrogen changes in the neigh-
borhood of 1.5'K. The change in the spectrum
occurs at the same temperature as the X anom-
aly in the specific heat. '

The absorption spectra were obtained using
a monochromator equipped with an optical cryo-
stat which has previously been described. ' To
minimize heating of the solid hydrogen sample,
the monochromator was placed between the in-
frared source and the cryostat, the infrared

detector being placed after the cryostat; the
heat input to the hydrogen crystal from the mo-
nochromator was less than that generated by
slow conversion of the ortho to the para species. ~

The temperature difference between the crys-
tal and the liquid-helium bath is estimated to
be less than 0.001'K.

The fundamental absorption band of solid nor-
mal H, is shown at a temperature of 1.9'K in
Fig. 1(a) and at 1.3'K in Fig. 1(b). The features
labeled S,(0) and S,(1) have practically disap-
peared in the low-temperature spectrum', the

QQ feature has split; and, in addition, the Qp
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FIG. 1. The s ecp ctrum of solid normal hydrogen at 1.9 Ka . [curve (a)] and 1.3'K [curve (b)].

and Sp branches have changed shape. This
change in the spectrum takes place over a small
temperature range. The spectra may be char-
acterized by the area of the S~(l) line, and this
quantity is plotted as a function of the temper-
ature in Fig. 2. As the crystal is cooled a tem-

which the intensity of the S,(1) line begins to
fall, and it drops nearly to zero if the tempera-
ture is lowered about 0.1'K; the spectrum un-
dergoes no further change to the lowest tem-

warmed the S,(1) line remains weak until the
temperature has been raised about 0.2'K above
the first transition temperature, when the in-
tensity of the line returns. The transition tem-
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peratures on cooling and heating are strongly
dependent on the ortho-para ratio; several dif-
ferent cases are included in Fig. 2. The tran-
sition temperature as a function of ortho-para
ratio is shown in Fig. 3. For comparison the7

temperatures of the specific-heat anomal 'may
and the anomaly in the nuclear-magnetic-reso-
nance spectrum &' are also shown. The tran-
sition temperatures of the different phenomena

l.3 1.4 I.5 I.6
TEMPERATURE ( K)

I.7 I.8

FIG.. 2. The area of the S&(1) line as a function of
temperature. The arrows denot th d'e e irection of tem-
perature change. The ortho concentrat'
73 o; curve b, 74%; curve c, 72.2 lo; curve d, 73.5%;
and curve e, 74Vo.
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FIG. 3 The transition temperature as a function of
orthoh droo y rogen concentration as observed in different
experiments. The temperature of the s 'f '

h t
anomaly measured by Hill and Ricketson and by Ahlers
and Orttung~ is shown by points (a) and (b), respective-
ly. The transition observed in the present work is
shown by points (c) (temperature rising) and (d) (tem-
perature falling). The nmr anom l ' h borna y is s own by points
(e) (temperature rising) and (f) (temperature falling)
(see Smith and Housley ).
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do not agree exactly, but they have the same
dependence on ortho concentr ation. Further-
more, the hysteresis effect observed here is
very similar to that observed in the nmr ex-
periments.

The spectrum of solid H2 has been analyzed
by Gush et al. ' and by Van Kranendonk. Three
types of transition may be distinguished: (1) tran-
sitions in which a single molecule changes its
state; for example, v =0 —0 =1; J=O —J=2
[S~(0) feature], or v =0-v =1; hJ =0 (Qq fea-
ture), where v is the vibrational quantum num-
ber and J is the rotational quantum number;
(2) transitions in which two molecules change
their state; for example, v, = 0-v, = 1; J, = 0-J, =O, v, =0-v, =0; J, =O- J, =2, which gives
rise to the Q~(0)+S,(0) feature; (3) transitions
in which a molecular excitation is accompa-
nied by the creation of a phonon in the crystal;
these are responsible for the QR and SR pho-
non branches.

The S,(0) and S,(1) lines arise from the qua-
drupolar induction effect. The intensity is pro-
portional to the square of the sum of the dipole
moments induced by the quadrupole field of
the absorbing molecule in all neighboring mo1. —

ecules. In parahydrogen this sum vanished
if the central molecule is at a center of inver-
sion symmetry. The fact that the S~(0) line is
observed in parahydrogen is proof that the pa-
rahydrogen crystal does not possess inversion
symmetry. ' The calculation by Van Kranen-
donk' of the intensity of the S,(0) feature in pa-
rahydrogen can be extended to the case in which
the absorbing paramolecule is surrounded by
orthomolecules instead of paramolecules. The
intensity for normal H, is the same as for para-
H, except for a small contribution arising from
the anisotropy of the polarizability of the ortho-
molecules. If the crystal structure of normal
H, is assumed to be hexagonal close-packed,
and if the orthomolecules are assumed to be
randomly oriented, then the intensity of the
S,(0) line per paramolecule in normal H, should
be about 15% greater than the same feature
in para-H2. In fact, this is what is observed:
For normal H, at 1.9'K, n[S,(0)]=4&10 "cm
sec, and for para-H2, n[S~(0)] =3.3X10
cm' sec . ~" The calculated value of n in
para-H2 equals 3&&10 "cm sec '.' If one as-
sumes a crystal structure for normal H, which
possesses inversion symmetry, the major con-
tribution to the intensity of the S,(0) line van-
ishes, leaving only the contribution arising

from the anisotropy of the polarizability, which
is much too small to account for the observed
line in the solid at 1.9'K; we conclude that at
this temperature the crystal does not have a
center of inversion. However, the sudden drop
in intensity of both S,(0) and S, (1) features when
the crystal is cooled can be readily accounted
for by a change in the crystal structure to one
possessing inversion symmetry. The weak
features of the original lines remaining in place
owe their intensity to the anisotropic terms
discussed above; they are double transitions
in which, for example, a paramolecule makes
the S, (0) transition, and a neighboring ortho-
molecule changes its m state, where m is the
magnetic quantum number.

The conclusion that a phase change has tak-
en place is substantiated by two other obser-
vations. Firstly, the phonon branches qR and

S~ in the low-temperature spectrum have a
noticeably different shape. One would natural-
ly expect a different lattice-vibration spectrum
to be associated with a different lattice struc-
ture. Secondly, there is a drop of 25% in the
integrated absorption coefficient of the Qq com-
ponent; if a phase change takes place, a loss
of intensity of this order is expected on the
basis of the theory of this band as developed
by Sears and Van Kranendonk. '

The phase transition presumably arises be-
cause of an ordering of the orthomolecules which
have a quadrupole moment; the quadrupolar
energy is apparently less on a crystal struc-
ture with inversion symmetry. The ground
state of orthohydrogen has been investigated
assuming a hexagonal close-packed structure" ~';
it would be of interest to extend these calcula-
tions to other crystal structures.
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