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Table II. Properties of He at the critical point.

T~ = 3.324 + 0.0018'Ka

p~ = 873.0 + 1.5 mrna

pz = 0.0418*0.001 g cm

Reference 2.

quite different from the value 4.2 obtained by
Vfidom and Rice' "for a variety of other sub-
stances. A discussion of the reasons for this
deviation in 5 as well as that found for P, in
terms of quantum mechanical corrections to
the theory of corresponding states, has been
given by Sherman and Hammel. "

at the critical point are summarized.
From the present isochore data the critical-

point exponents for compressibility, y ', y,
and yt' have also been derived The values
found are

y
' ——1.00*0.05,

y = 1.09 ~ 0.05,

y
' ——1.18 + 0.10,

in the relationship

o= fT -Tf
T c

yg' and y~' refer to the vapor and liquid branches
of the coexistence curve, and y refers to the
critical isochore for T& T . While g is derived
directly from density observations, exponents
such as y are derived from derivatives of PVT
data and hence are subject to more uncertainty.

An interpolation of the isochore data has been
carried out at the critical temperature, 3.324'K,
and the degree of the critical isotherm, 6, was
evaluated in the relationship

I,P Pl ~ Ip-p-
c C

The value of 5 found was 3.4 + 0.2, which is
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DEPENDENCE OF THE OPTICAL CONSTANTS OF SILICON ON UNIAXIAL STRESS
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Structure in the real and imaginary parts
of the dielectric constant, e, and e„ is well
known to be related to the presence of critical
points in the (direct) optical energy versus
k-vector relation. ' These critical points have
played a major role in studies of band struc-
ture. ' Recently Seraphin has been able to mod-
ulate the ref lectivity by an ac variation of the
electric field at the surface. This modulation

greatly enhances the structure and hence makes
it possible to resolve critical points much more
clearly than in earlier methods.

We wish to report here an alternative meth-
of for enhancing critical-point structure, name-
ly by an ac strain modulation of the ref lectivity,
and to present a simple theory of the effect
and the symmetry relations between the strain
components and the polarization direction of
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the reflected light. We find that the strain mod-
ulation can be represented by three fundamen-
tal constants which may be used to character-
ize and, in special cases, to infer the symme-
try properties of the critical points. This three-
parameter characterization of critical points
should be extremely useful in comparing criti-
cal points in different materials and identify-
ing corresponding points.

The theory of the strain effect is very sim-
ply related to the deformation-potential con-
stants of the critical-point energies ~

' The strain
variation takes a derivative of the square-root
singula, rities in e, and e, leading to 1/square-
root singularities which are infinite (in the
absence of lifetime broadening) at the critical
points, thus greatly enhancing the structure.

Dc measurements of piezoreflectance have
been made by Philipp, Dash, and Ehrenreich'
and by Gerhardt. ' Because the ref lectivity
changes are very small, even for strains of
the order of the elastic limit of silicon (AI./I.
-10 '),~ the dc strain method is rather insen-
sitive. The sensitivity can be considerably
improved by use of phase- and frequency-sen-
sitive detection of AR.

In this work, the stress is applied to the
crystal via the method of free-free longitudi-
nal acoustic resonance, and the experimental
apparatus is diagrammed in Fig. 1. A +5'X-
cut extensional quartz-crystal oscillator trans-
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FIG. 1. Diagram of the ac piezoreQectance experi-
ment.

ducer is cemented to a thin Si bar. The free
longitudinal resonance of the quartz driver is
fo-130 Kc/sec, and the silicon-crystal length
is carefully ground and (finally) etched so that
the composite oscillator system has the reso-
nance frequency fox 0.5 cps. Under the assump-
tion that the quartz and silicon crystals are
thus tuned to the same fundamental longitudi-
nal resonance, the bond interface between the
two crystals is a position of maximum vibra-
tional amplitude and of minimum (or zero) stress.
Confirmation of this assumption comes from
the fact that the computed resonance length
agrees with the measured length to better than
1%. The amplitude limit of vibration is deter-
mined only by the elastic limit of the "weaker"
of the two components, in this case the quartz,
which has the limit b,I./I. -5xl0 '. Monochro-
matic dc light is reflected from the midpoint
of the Si-crystal length (point of maximum stress),
and this light is detected by a uv-sensitive pho-
tomultiplier tube (response time &10 ' sec).

The output of the photomultiplier tube is moni-
tored by a dc current meter. This current is
proportional to the total ref lectivity R. The
ac (130-Kc/sec) photomultiplier output is fed
into a phase-sensitive lock-in detector which
uses a small fraction of the quartz-crystal
driver circuit as a reference signal, This de-
modulated signal is proportional to AR, and
thus I(&u)/Idc = b,R/R, which is the quantity which
is plotted. Results of measurements of AR(~)/
R (~) for polarizations parallel and perpendi-
cular to the stress direction for the 001, 110,
and 111 faces with 110 stress and for an 010
face with 100 stress are shown in Fig. 2 and
are labeled according to the polarization direc-
tion of the F. vector. In the case of 110 stress,
110 polarization i'a.easurements were made
on all three principal faces. Since the stress
is longitudinal for a long thin bar, the reflec-
tance should be the same for all faces for 110
polarization. The data shown in Fig. 2 demon-
strate clearly that such is the case, save for
a modest wavelength-insensitive constant dif-
ference between curves for the various faces.
On the other hand, the dependences of bR/R
on Av for polarizations with E vector perpen-
dicular to the stress show major variations
from one another and from the parallel polar-
ization curves.

For small strains the change in ref lectivity
can be related directly to a variation in the
dielectric-constant tensor, cg&, proportional
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component of the dielectric-constant tensor
in the direction of polarization of the F. vector
of the light. n and k are the optical constants
of the unstrained (cubic) material which are
therefore scalars.

In a long thin bar the stress tensor, T~j,
will be entirely dia.gona. l (longitudinal), T&&,
where j is parallel to the length of the bar.
For a bar of finite thickness the corrections
to this result go as (w/l)2, where 10/f is the
width to length ratio. This correction is of
the order of 1% in this experiment and will
henceforth be neglected. For a (110) bar (T&&
=—T»,), we have

—x 10e

C80-
1TT-T-T

xx yy xy
(3)

40— where Txx, etc. , are the stresses resolved
along cubic directions. The elastic- compliance
constants, sij, may then be used with (1) and
(3) to give the relations
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We can also derive the relation
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FIG. 2. bR /R vs hv for polarization modes parallel
and perpendicular to stress field.

We adopt the abbreviations which are used for
the stress-strain tensor, c.

The change in reflectance, b,R, for a cubic
material can be shown to be given by

2

[(n + 1)'+ k']'(n'+ k')

x Re{[(n-ik)2- (n-ik) JIILe . .). (2)

Re means "real part of." b, ei, is the diagona

to the strain uk~. The constant of proportion-
ality is a fourth-order tensor, with 8' defined,
for the case of cubic symmetry with cubic axes,
by

= W u +W&2uxx 1& xx yy

be =W u

The superscripts denote the stress direction;
the subscripts on e, T denote the diagonal com-
ponent of the tensor in the indicated direction.
(@110—= e" with j in the 110 direction. )e110- jj

We also write down the results for the stress
in a (100) direction:

(9)

e,'00 = [W„S„+2W12S„]T)oo)

eool=[W» 12+W12(»+ 12)] 100.

The fundamental constants W», W», and W44
are plotted in Fig. 3. W44 was obtained using
Eqs. (4) and (5) with the data of Fig. 2(a), while
W and W were obtained from Eqs. (8) andll 12

(9) with the data of Fig. 2(d). The units for
th W are arbitrary but are the same for alle ij
three curves.

As symmetry checks we plot in Fig. 2(c) the
measured ely20 with the value calculated from
Eq. (7). A further symmetry check is obtained
by comparing in Figs. 2(b) and 2(d) the mea-
surements of coo, and tool which Eqs. (9) and
(6) show should be identical. The comparisons
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FIG. 3, Fundamental piezoreflectance constants as
functions of frequency.

are seen to be quite close.
In the vicinity of a critical point, there is

a nonanalytic contribution to e, which has the
form

(lo)

for type M, and M, critical points in the nota-
tion of Brust, , or

E = a ((d —(d)
2 l c (d & (d

c

for type M, and M, critical points. We ignore
the analytic parts of e, because, upon differ-
entiation, only the nonanalytic term yields an
infinity at ~c. For the same reason, we ignore
the strain dependence of a. Differentiation of
Eq. (10) gives

df ' =b ((u-( )
4Q g c c (12)

-0 d(d
g c

g 2 dQ

du ((d —co )k'l c
(is)

The singular contributions from the derivatives
of E'y and e, are equal in magnitude but occur
on opposite sides of the critical-point energy,

To obtain dcl/dul,
&

we differentiate the Krarners-
Kronig relation and keep only the singular con-
tribution, which is

The two cases are similar except for the re-
versal of sign.

Equation (2) shows that del/duff and de2/duff
have different weighting factors. This equation
has been derived in scalar form by Seraphin, '
who has also computed the weighting factors
from the n and k values of Philipp and Taft."
At 3.3 eV the two coefficients are equal in mag-
nitude but the range of equality is very narrow.
The two peaks seen between 3.2 and 3.6 eV may
then originate from the same critical point.
Since the peaks are of opposite sign, the sin-
gularity must be of type M, or M, . The e, da-
ta themselves require that it be type My At
4.2 eV the coefficient of de2/duff goes through
zero, hence only one peak is expected.

When the critical points lie on nondegenerate
100 or 111 symmetry axes, one can infer spe-
cial symmetry relations between the singular
contributions to the W coefficients due to sym-
metry relations among the deformation-poten-
tial constants of the critical points. A strain
u will not shift nondegenerate b, (k00) ener-
gies, hence the contribution of 6 critical points
to W«will be zero. All nondegenerate A en-
ergies are shifted equally by a u~~ strain, hence
the contribution of A critical points to W» and

Wy2 will be equal. Of course, both the A and
6 relations must apply to a nondegenerate I"

point.
Equality of TV» and W» peaks is nowhere

strongly suggested by the data. However, the
strong peaks just above and below 3.4 eV in

Wyy and W» are much weaker in W44, which
could be due to critical points at A. Brust's
calculations" do indeed suggest that critical
points on 6 make an important contribution
to e, at 3.4 eV. The valence state for the 6
critical points is doubly degenerate, however,
so that the above conclusion would require that
the sensitivity to u~& strain of the degenerate
valence bands be much less than the u~~ sen-
sitivity of the nondegenerate conduction band.
Gerhardt' has also given evidence that the 3.40
peak comes from 6 critical points.
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This note reports that the magnon dispersion
curve for iron deviates considerably from the
quadratic law, Sm =Dq', even for relatively
small wave vectors q, indicating a long-range
magnetic interaction in this metal.

The measurements were done by utilizing
the diffraction method in conjunction with po-
larized neutrons. The angular width of the mag-
non scattering surface was determined as a
function of the angle b, cp by which the crystal
is misset from the elastic Bragg peak (110).
(See Fig. 1.)

Correction for the instrumental resolution
was made by foMing the resolution function
(measured by scanning the Bragg peak) into
an ideal rectangular profile. A least-squares
fit of the profile so obtained to the observed
profile was made with the width as the varied
parameter. The use of polarized neutrons in
the present experiment allows one to distinguish
unambiguously the magnon scattering from other
scattering contributions, as has already been
described in some detail. ' The main part of
the data were collected on a single crystal of
iron containing 4 at.

/&& silicon, kindly provided
by Dr. H. J. Williams and Dr. A. J. Williams
of Bell Telephone Laboratories.

The energy of a magnon with wave vector q
may be written as a function of the excha. nge
interactions Z(r),

assuming zero energy gap. For a body-centered
lattice with q along the f100J direction, this ex-
pression reduces to the following simple form
if only the nearest neighbor interaction J, is
effective:

hw = 16J,Sf1 —cos(-,'qa) ].
And for small q values,

(2)

q'a' q4a'
Kw = 2J,Sq'a'~ 1— + + ~ ~ ~ ~.

Small-angle scattering measurements by Lowde
and Umakantha and other workers at Harwells
yield the result hu = Dq', with D = 286 meV A .
This method corresponds to the special case
of the diffraction technique with zero misset
angle at the (000) reflection and effectively sam-
ples the dispersion curve for exceedingly small
q values (qa/2v & 0.025), so that the higher terms
in Eq. (3) are truly negligible.
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