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requirements of the Vfidom and Griffith rela-
tionships is probably coincidental. On the oth-
er hand, errors in the PVT measurements
arising from gravitational effects are least
for hydrogen, and this fact probably tends to
enhance the reliability of the data.

The experimental value of the index 5 for
He~ given in Fig. 1 (point m) was determined
from the PVT measurements of Sherman o to
be 3.4+ 0.3. It is of interest to note that this
is consistent with the Widom and Griffith re-
lationships using the other measured values
of the He~ indices.

Finally, according to Griffith's second re-
lationship, 9 probably increases with A*, but
there is insufficient experimental evidence
at present to make any meaningful compari-
sons.

The authors gratefully acknowledge the sug-
gestions made during the preparation of this
Letter by Dr. S. Y. Larsen and Dr. J. M. H.
Levelt Sengers of the National Bureau of Stan-
dards, Washington, D. C., and by Dr. C. E.
Chase of the National Magnet Laboratory, Cam-
bridge, Massachusetts.
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Hirschfelder' has shown that the evaluation
of the expectation value of the Heisenberg equa-
tion of motion for a stationary (bound) state
leads to a class of identities that are generali-
zations of the virial theorem. The object of
this note is to show that when nonstationary
(scattering) states are used to compute the ex-
pectation value, a new class of identities re-
sults. These are generalizations of Ehrenfest's
theorem in the same sense that Hirschfelder's
"hypervirial" theorems are generalizations
of the virial theorem.

We shall prove the extended Ehrenfest's the-
orem in a very general form and then shall
specialize the theorem to apply to momentum

transfer, energy transfer, and rotational ex-
citation.

The momentum-transfer theorem we derive
below was previously derived by Gerjuoy for
two particular cases: elastic scattering of a
particle by a potential, ' and inelastic scatter-
ing of electrons by atomic hydrogen. ' A con-
cise derivation based on the properties of the
S matrix was also given by Corinaldesi.
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Corinaldesi's treatment is closer to the meth-
od of derivation employed here; however, his
considerations were limited to single-particle
elastic potential scattering. Gerjuoy's deriva-
tion was carried out by an explicit calculation
in a coordinate (Schroedinger) representation.
Because of the consequent notational complex-
ity, the generalization from e-H scattering to
more complicated (many-particle) processes
could only be inferred as "plausible. " It was
suggested' that the symbolic methods which
characterize recent reformulations of scatter-
ing theory'&' were unsuited to problems of this
type, and that "it probably will be necessary
to essentially redo" the treatments of refer-
ences 5 and 6.

The extended Ehrenfest theorem is derived
below by a straightforward application of the
symbolic method as developed for time-inde-
pendent scattering theory. '&' The validity of
the generalization of the momentum-transfer
theorem from the two special cases mentioned
above is established. A completely general
proof of the extended Ehrenfest theorem is
presented, in a form suitable for the discus-
sion of other questions as well as momentum
transfer. The derivation is valid not only for

single-particle elastic potential scattering, or
inelastic e-H scattering, but also for scatter-
ing by complex aggregates. A modification
of the symbolic methods currently used in scat-
tering theory therefore appears unnecessary.

To prove the basic theorem we shall use the
notation of reference 5. We consider an oper-
ator, A, as yet unspecified. We wish to cal-
culate the rate of change, induced by the scat-
tering process, in the value of the observable
represented by A. Since a determination of
the net change in the value of A implies that
A. is measurable in the initial and final states,
we shall assume that A. commutes with Ho. The
eigenvectors of H„which constitute the basis
for representing the initial and final states,
therefore are also eigenvectors of the opera-
tor A (AC~=ABC~).

The expectation value of the Heisenberg equa-
tion of motion for A, in a particular scattering
state, a, is

(y 1+) Ay 1+i& — @ (+) [g ~ ]y (+))
a ' a a 'ih ' 1 a

Expanding the right-hand side in terms of the
eigenvectors H„and using (I 1.63) and (I 1.61)
we obtain

&+} ~@, C, ~ g (+) g &+) ~ gC @ @
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In the limit e-0, this becomes (I 1.57)
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If A is not a constant of the motion during the
collision, this last relation and Eq. (1) lead

If A. is a constant of the motion during the
entire collision, and not only during the initial
and final states, the commutator of 4 with 0,
is zero and all Ay's are equal to Aa. The ex-
pression in (3) (with the A's cancelled) then
equals zero (optical theorem):

=—Q(A -A )I T I'5(E E)-
=g(A -A )zo

b a ba' (5)

In the last line we have introduced usa, the
rate at which the transition probability increases
(I 1.6V).

This is the generalization of Ehrenfest's the-
orem. It states that the rate at which A is
changed by the scattering process can be de-
termined (except for the factor 1/ik) by eval-
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uating the expectation value, in the appropri-
ate scattering state, of the matrix element of
the commutator of A and Hy.

Various choices of A are now possible:
(1) If A is any constant of the motion (during

the entire collision) then, as observed in con-
nection with Eq. (3) above, we always obtain
the optical theorem, Eq. (4).

(2) If A is the momentum operator of the in-
cident system I', andH, is a potential ~, we
find

(6)

The (vector) rate of momentum transfer per
unit time is given by the right-hand side of
Eq. (6). In the simplest case, elastic scatter-
ing, this is eoual to the momentum-transfer
cross section times Pv, the product of the (con-
served) magnitudes of the momentum and the
velocity of the incident particle; that is, we
are led to the form of the theorem derived in
reference 2.

As wr itten, however, Eq. (6) is mor e

gene-

rali than this; in this form, the identity is
valid for arbitrary scattering processes. In
each specific instance, it is only necessary
to substitute the corresponding elements of
the T matrix, evaluated in the appropriate
basis.

(3) If A is chosen to be P'/2m, the kinetic-
energy operator of the incident system, the
right-hand side of Eq. (5) represents the net
rate of energy transfer between the incident
particle and the target. If H, is again replaced
by the potential V, we find

t+) ~
[2) vl @

t+)

)a 22222k a
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by +2, and Eq. (5) can be put in the form~~8

O' J—2 J 2P Jn~'

Here we have assumed that the rotator is orig-
inally in the state of angular momentum 4, cor-
responding to the rotational energy F~, and

the remaining quantum numbers are given by
n and P.

We close with some general comments.
(1) Following the technique already used above,

a number of formal identities can be derived.
These will probably be quite useful in exhibit-
ing the implications of the general theory. How-

ever, their utility for practical calculations de-
pends on the ease and accuracy with which the
left-hand side of Eq. (5) can be evaluated. An

exact determination of this expression requires,
of course, an exact knowledge of the scatter-
ing-state vector C~' '. It is not immediately
obvious how useful an evaluation via the Born
approximation, or one of the other approxima-
tions used in scattering calculations, will be.

(2) The sum in Eq. (5) is over a complete
set of states and therefore includes all reac-
tions that are possible as a result of the col-
lision. In particular, if rearrangements are
possible and A is measurable both in the orig-
inal and rearranged channel, Eq. (5) is still
valid. However, it is useful to distinguish ex-
plicitly between the original and rearranged
channels. Considering only two channels, let
H, ' and H, ' represent the decomposition of the
Hamiltonian in the original channel, and Ho"
and H," the corresponding decomposition in
the rearranged channel, with a similar conven-
tion for the basis vectors in each channel. '
Assuming that A is meaningful (measurable)
in both channels, one can show" that the the-
orem takes the form

(4) To discuss rotational excitation of a tar-
get, say a molecular rotator, we replace A

by the rotational energy operator of the target
J'B, where J is the angular momentum opera-
tor of the rotator. Specializing to the case of
a quadrupole interaction, 0, is repla. ced by Q,
a tensor operator of rank two. The T matrix
then has matrix elements only between states
for which the eigenvalue of the rotator 4 changes

+ Q (A„„-A )w„„' ) '. (9)!!Q!!

Here the notation "b" means that the summa-
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tion is extended only over those states that prop-
agate asymptotically in each channel. The tran-
sition probabilities per unit time are defined
by

=—l(C, H e (+
)~ g(E E ). (lo)

ba h b' 1 a a

(3) As a further generalization of Eq. (5),
we note that if a scattering interaction is in-
cluded in HO~, the Q~ state vectors are replaced
by Cf,

' '8, the eigenvectors of HOP correspond-
ing to an incoming scattered-wave boundary
condition.

(4) An essential element in the derivation
of the extended Ehrenfest's theorem was the
restriction that the state vectors that consti-
tute the basis must also be eigenvectors of the
operator A. On the other hand, Ehrenfest's
theorem requires the construction of a wave
packet. The ensuing contradiction is only ap-
parent. It may be resolved by noting that if
the scattering forces are zero outside a finite
range, the wave packet may be constructed
of free-particle states. To calculate the left-
hand side of Eq. (5) and the matrix elements

7~a, the form of the wave packet is required
only in the (finite) region where the potential
differs from zero. In any such limited region
we may go to the limit where the sum over
free-particle states that constitutes the wave
packet is replaced by a single, free-particle
state.

When short- and long-range forces are both
present, the long-range forces are first elim-
inated by constructing the wave packet as a
superposition of the states corresponding to
motion in the presence of the long-range forces.
Within the short range of the remaining forces,
the wave packet again may be replaced by just
one of the superposed, long-range force states.

I am indebted to Dr. Peter Redmond for use-
ful discussions and to Professor Gerjuoy and
Professor Corinaldesi for communicating their
results before publication.
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