
QQLUME 1$, NUMBER 26 PHYSICAL REVIEW LETTERS 27 DECEMBER 1965

CHARACTERISTIC NONINVARIANCE GROUPS OF DYNAMICAL SYSTEMS*

N. Mukunda, 1 I . O'Raifeartaigh, f and E. C. G. Sudarshan

Summer Institute for Theoretical Physics, University of %'isconsin, Madison, Wisconsin
and Physics Department, Syracuse University, Syracuse, New York

{Received 20 September 1965)

In recent years group theory has played an
increasingly important role in particle phys-
ics. The orthodox notion of a symmetry group
relates to an exact invariance group of the Ham-
iltonian, which entails conservation laws and
selection rules. To a large extent the isospin
group SU(2) is considered in this orthodox way.
However, more recent studies of symmetries
in particle physics have shown the relevance
of larger symmetry groups such as SU(3), SU(4),
and SU(6). These groups contain the isospin
group as a subgroup, but are only "approximate"
symmetries of the Hamiltonian. The most im-
portant role played by these groups is in the
organization of isospin multiplets into super-
multiplets. It turns out, however, that in some
special models these approximate symmetries
can be related to the dynamics of the system. '~'

It is therefore relevant to investigate the ques-
tion of characterizing the dynamical system
in terms of its approximate symmetries. '&

In this note we consider the general nature
of the supermultiplet or "approximate" sym-
metry structure for three fully solvable quan-
tum mechanical systems, namely, the rigid
rotator, the three-dimensional harmonic os-
cillator, and the hydrogen atom. It turns out
that many features of the supermultiplet struc-
ture are the same for all three systems. These
features, which we outline in general below,
illustrating them explicitly for the rigid-rota-
tor case, seem likely to be common to many
quantum mechanical systems, and may be val-
id for elementary-particle systems also.

We begin with the case of the rigid rotator.
The Hamiltonian of the system is invariant un-
der rotations and hence the energy levels fall
into mu1tiplets, each of which furnishes a uni-
tary irreducible representation (UIR) of the
rotation group O(3). But there is a further reg-
ularity, namely, that every (one-valued, irre-
ducible) UIR of O(3) occurs in the spectrum
once and only once. The question is this: is
it possible to associate this regularity with
a supermultiplet furnishing the UIR of a (larger,
"approximate") symmetry group? The answer
is, "Yes." For any integer v, the first n en-
ergy levels of the rotator, which furnish, re-

spectively, the 1-, 3-, 5-, ~ ~ ~, (2n+ I)-dimen-
sional UIR's of O(3), can be identified with a
UIR of the group O(4) of (real) orthogonal trans-
formations in Euclidean four-space. But that
is not all —it turns out that, in addition, the
infinite number of levels left over may be iden-
tified with an infinite-dimensional UIR of the
group O(3, 1) of (real) orthogonal transforma-
tions in Minkowski four-space. Furthermore,
the partition between the O(4) and O(3, 1) mul-
tiplets (i.e., the choice of v) is arbitrary No. te
that there is no question of either O(4) or O(3, 1)
being an invariance group of the Hamiltonian.
We may refer to O(3) as the invariance group
and O(4) or O(3, 1) as the noninvariance group.

Let us now give a more quantitative version
of these remarks. As is well known, the rig-
id rotator has energy levels such that each
energy level corresponds to an integral value
l of the total angular momentum operator.
In the energy spectrum each integral value
of l =0, 1, 2, ~ ~ ~ occurs once and only once,
and the 2l+1 states corresponding to it furnish
a UIR of the invariance group O(3). The first
v multiplets of O(3) constitute the symmetric
tensor representation of rank v of O(4). If
we denote the generators of O(3) by J~ = J', + i',
Z„and the additional generators of O(4) by
R+ R

y
+ RR2 +g then the commutation rela-

tions of the J,E imply the slection rules

Al =0, for J,

Al =0,+1, for E. (2)

(lm iE, i/-1, m —m')

= C i, (/ tiE ii/-I).
1l-1l
m'm-m'm (3)

For the symmetric tensor representation it
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Hence the only nontrivial pari of determining
the UIR consists in identifying the reduced ma-
trix elements (/iIE II/), (/ IIE )/-I), and (/ —1 liE II/)
= -(/ IIE Ii/-1)(2/-I)'"/(2/+1) ", where, for
example, (/ iiE II/-I) is defined by the relation
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turns out that (l IIE [Il) is zero, and

(I IIE IIl-1) = [l/(2l+1)] ~ [(x+1) -l ]

0 «l «~, (4)

and (l I[Q[[l-2). For the symmetric tensor rep-
resentation of SU(3) these turn out to be

l(l+1)(2E+1)
(l IIQ Ill) =-(2k+3 3(2l-1)(2l+3)

provided we choose X = v and l» v+1.
It is interesting to note that beside the above

scheme, we have the more general possibil-
ity of organizing all the levels of the rotator
between the p,th level and the A.th level, where
p and A, are arbitrary, into one UIR of O(4).
This representation is characterized by the
reduced matrix elements

(l [[E I[l) = [(l+1)(2E-1)]~"p(X+1), (8)

(l [IE I[l-1)= [(2l+1)(E'-g')/I]"'[(x+1)'-E2]'". (7)

If for this representation we make the trans-
cription

(E l[E' Ill)-(l IliE I[l) = [(2l-1)(E+1)]~ go, (8)

(E IIE IIE-1) —[(2E+1)(E'-i ')/E]'"(E'+a')'" (9)

and A. --l-io, 0 real, and E» p, , then we ob-
tain a UIR of O(3, 1). This representation con-
tains all the levels of the rotator except those
below p, .

Besides the possibility just mentioned, we
have, for the rotator, still another possibil-
ity. This is to choose, instead of the first v
levels, the first v even-numbered (or odd-num-
bered) levels and put then into a UIR of a "non-
invariance" group. The noninvariance group
in this case is SU(3). This group has five gen-
erators in addition to the generators of the
subgroup O(3), and they transform with respect
to O(3) as a tensor Q of rank 2. This implies
the selection rules for Q

4l =0, +1,a2. (10)

Hence the essential part of the explicit deter-
mination of the UIR is the computation of the
reduced matrix elements (l IIQI[l), (l IIQ Ill-l),

where A. is a non-negative integer. If we choose
X =v we have the O(4) UIR containing the first
v levels of the rotator m. We could also real-
ize an infinite-dimensional UIR of the noncom-
pact group which incorporates all the levels
of the rotator except the first v multiplets of
O(3). This representation is obtained by the
transcription

(l II E' [I l-1)- (l II iE II l-1)

(l II Q I[ l-2)
= [X(g + 3)-(l + 1)(l-2)]'"[2E(l-1)/(2l-1) ]~~' (l l)

with (l IIQ I[l-1) equal to zero.
If we choose A =2v, we obtain a UIR of SU(3)

which contains the first v even-numbered lev-
els of the rotator. If we choose A. =2v+1, we

obtain the first v odd-numbered levels. Fur-
thermore, if we make the formal transcription

(l II Q' ll l) - (E II iQ II l) = 2p, (12)
E(E+1)(2E+1)""

(l IIQ' I[l-2)-(l lliQ Ill) = [(l+1)(l-2)

+ p'+9/4]' '[2l(l-1)/(2E-1)] (13)

where x - -2+i p., p, real, we obtain a UIR of
the noncompact group SL(3,R). According to
whether we take the lowest l value equal to
zero or one, we obtain all the even-numbered
or all the odd-numbered energy levels. Note,
however, that in this (double-jump) case there
is no possibility of obtaining all the even (or
odd) levels except the first v, for arbitrary
v. Only v =0 or 1 are possible.

In both these methods of organizing the mul-
tiplets of O(3) into supermultiplets of O(4) and

O(3, 1) on the one hand, and of SU(3) and SL(3, R)
on the other, we see that the analytic structure
of the generators (or, more precisely, of their
matrix elements) of the compact group and
the corresponding noncompact group are sim-
ply related.

We close our discussion of the rigid rotator
by mentioning that, although the above consid-
erations are confined to the rotator in three
dimensions, the results generalize at once
to the case of the rigid rotator in n dimensions,
the invariance group being O(n), the noninvar-
iance groups being O(n + 1) and O(n, 1), and
the double-jump noninvariance groups being
SU(n) and SL(n, R), in the general case.

Having discussed the case of the rigid rota-
tor in some detail, we summarize briefly the
general features which are encountered.
(1) There exists an invariance group g of the
Hamiltonian. (2) g can be considered as a sub-
group of a larger group 6 with a compact form
Gg and a noncompact form GNg, such that
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the states of the first v energy levels furnish
a UIR of Gg and the states of the remaining
levels a UIR of GNg with v arbitrary. (3) g
can also be coundered as a subgroup of a larger
double-jump group G' with a compact form
GC' and a noncompact form GNC', such that
the first v even-numbered (or odd-numbered)
levels furnish a UIR of GC' and all the even
levels (or all the odd levels) furnish a UIR
of GNt '. (4) These properties are not confined
to the three-dimensional case, but can be gen-
eralized to n dimensions in an obvious way.
(5) Although the additional generators needed
to form G and G are not conserved quantities,
they are dynamical variables, i.e., their ex-
plicit expressions in terms of the primitive
dynamical variables can be written down.

A study of the harmonic oscillator and hydro-
gen atom (to be published elsewhere) reveals
that the above features occur in these cases
also. More specifically, we can deduce the
results shown in Table I.

By the hydrogen atom in n dimensions is
meant a system with a potential r ', where

n
r =Px.*.

gi=1
(l4)

Note that for E & 0, GC has been generalized
to be a noncompact group, since even the in-
variance group is noncompact in this case.
The double-jump groups for E & 0 have not been
calculated.

We make some comments on the results im-
plied by the table. First we notice that the gen-
eral features are the same for all three sys-
tems, although the rigid rotator has no high-
er symmetry (i.e., its invariance group is no
larger than the obvious geometrical rotation
group) while the other two systems have such
a symmetry. Thus while the existence or non-
existence of a higher symmetry is of paramount
interest for other purposes, ' it does not seem
to be relevant to the problem of noninvariance

groups'
A second point we notice is the following role

which is played by the double-jump noninvar-
iance group. The ordinary noninvariance (sing-
le-jump) group, although it can accommodate
all the energy levels, does not tell us which
ones actually occur. This is on account of the
arbitrariness of the lowest level which occurs
in the UIR of the noncompact form (arbitari-
ness in v above). The double-jump group has
no such arbitrariness since its representation
contains all the even (or all the odd) levels.
Hence the double-jump group tells us which
levels actually do occur. Whether or not this
result is connected with the theory of Regge
trajectories remains to be seen.

The third point we consider is perhaps the
most striking, namely, the fact that for the
noninvariance group, the compactness or non-
compactness is not determined. On the con-
trary, it is at our disposal, and according to
whether we are interested in a finite number
of levels or an infinite number (all the levels,
or all but a finite number), we may choose the
relevant compact or noncompact form and put
the levels into an appropriate UIR of that form.

We conclude by considering the question of
the uniqueness of the noninvariance groups.
The fact that we can include not only all the
energy levels in a UIR of GNC but also all the
levels up to an arbitrary one in a UIR of GC
provides us with a sense in which, in our three
cases, the noninvariance groups are unique.
The uniqueness is expressed formally by the
following theorems:

Theorem A. —Let g be a classical group,
with symmetric tensor representations t(r),
~=0, 1, 2, ~ ~ ~ . We look for a classical group
Gg such that GC+g and for every integer s,
there exists a UIR T(s) of Gg which decomposes
with respect to g according to

S

T(s) = P e t(r). (15)
r=0

Table I. Invariance and noninvariance groups for dynamical systems in n dimensions.

System Invariance group g
Noninvariance group

GG GNC

Noninvariance double-jump group
GG GNG'

3.igid rotator
Harmonic oscillator
Hydrogen atom, E & 0.
Hydrogen atom, F &0.

0(n)
SU(n)

0(n+ 1)
O(n, 1.)

g(n+ 1) O{n, 1)
SU(n+ 1) SU{n, 1)
0(n+ 2) O(n+ 1, 1)

Q(n+ 1, 1) O(n, 2)

SV(n)
~ ~ ~

SU(n+ 1)

SL(n, R)

SI (n+ 1,R)
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Then,

if g= SU(n), G = SU(n+ 1) uniquely,

if g=O(n), G +O(n+1) uniquely,

if g = Sp(2n), G = SU(2n + 1) uniquely.

In this sense the single-jump noninvariance
groups of our table are unique.

Theorem B.—With g and t(r) as in theorem A,
we Look for a GCDg and a T(s) which decom-
poses according to

8
T(s)= P et(2r+x); x=o, l.

r=o
(16)

Then,

if g=SU(n), G does not exist;

if g= 0(n), G = SU(n) uniquely;

if g=Sp(2n), G does not exist.

In this sense the double-jump noninvariance
groups are unique.

Finally, it might be asked whether the jump-
ing stops at double jumps. That it does is shown

by the following theorem:
Theorem C.—With g and f(r) as in theorems A

and 8, there exists no classical group |"Cgg
such that t"C has an irreducible representation
T(s) which decomposes with respect to g ac-

cording to
S

T(s) = P S t(pr+x); 0 ~x ~P-1;P) 3. (17)
r=o

The proofs of theorems A, B, and C are straight-
forward and are omitted in the interest of brev-
ity.
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