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of 1-10 cm™! which seems reasonable. More detailed studies of our mechanism® and its application

will be published elsewhere in the future.

Halley and Silvera’s mechanism seems to us to be ineffective. If their first expression is correctly

written, it is

@=0Z, (r, 1€ it Xr (Tir)/E,~E %, (0 T, (e 199 i) /e -8 ).

Considering the fact that the orbital functions
appearing in Eq. (6) can be chosen to be real,
we see that the matrix elements of L are pure
imaginary while those of Q(op) are real. This
immediately leads to a vanishing @ because
of the Hermitean nature of L. Putting it in a
more sophisticated way, the quadrupole moment,
which is Hermitean and invariant with respect
to time reversal, cannot be represented by a
Hermitean operator proportional to § which
changes its sign upon time reversal.
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It is known that solid hydrogen has a specif-
ic-heat anomaly at about 1.6°K at high ortho-
hydrogen concentrations (>60%).'”® This anom-
aly is accompanied by a change in the nuclear
magnetic resonance line shape.*”" It has been
shown that solid hydrogen undergoes an order-
disorder transition at this temperature which
could be caused by the quadrupole-quadrupole
interaction between the ortho-molecules.?*°
Further, Nakamura® has shown that this quad-
rupole-quadrupole interaction is the most im-
portant contribution to the energy of ordering.
Below the transition temperature an ordered
state is formed to give minimum interaction
energy. Recently, the infrared-absorption spec-
trum of solid hydrogen has been measured by
Clouter and Gush™ near 1.5°K. They observed
a change in the spectrum at the same tempera-
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ture, which can only be explained if we assume
that the crystal structure changes from one
without inversion symmetry above the transi-
tion temperature to one with inversion symme-
try below it.

The purpose of this note is to suggest a low-
est energy configuration of pure ortho-hydro-
gen and to show that the minimum quadrupolar
energy in the face-centered cubic lattice is
lower than that in the hexagonal close-packed
lattice, a result in accord with the measure-
ments of Clouter and Gush.® This is done by
the classical method of Luttinger and Tisza'?
for minimizing the dipole-dipole interaction
energy which has been generalized by Nagai
and Nakamura®® for quadrupole interaction.

The interaction energy between two quadru-
poles, each of quadrupole moment @, is given
by
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where T is the vector joining the centers of
the quadrupoles and §, and §2 are unit vectors
characterizing the directions of the quadrupole
axes with respect to the axes of the lattice.

A quadrupole moment is a symmetrical rank-
two Cartesian tensor. An alternative method
of representing a quadrupole is by means of
spherical tensors of spin 0 and 2. According
to Nagai and Nakamura,'® only the spin-2 com-
ponents enter into the interaction energy of
two quadrupoles. We shall thus represent a
quadrupole as a vector in a five-dimensional
space, with components ¢,,+-+,q,. These are
related to the components of the axis of the
quadrupole Sy, Sy, Sz, as follows:
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The condition Sy®+Sy?+ Sz? =1 implies

but not every five-dimensional vector that sat-
isfies the latter condition also satisfies the form-
er one, and therefore is not a physical quadru-
pole.

The quadrupole interaction energy is an ex-
pression of fourth degree in the components
of §, but of only second degree in the compo-
nents of q. As thus expressed, the problem
of finding the configuration of quadrupoles with
minimum energy is mathematically the same
as that of finding the configuration of minimum
energy of dipoles, and the method of Luttinger
and Tisza'? for the latter problem may be used
for the former. We assume that any two quad-
rupoles separated by two lattice spacings are
always parallel. Thus, the fcc lattice is divided
into 32 simple cubic sublattices and the hcp
lattice is divided into 16 simple hexagonal sub-
lattices, all the quadrupoles on the same sub-
lattice being parallel to each other. Hence any
state of a quadrupole array can be represented
by a point in a 160-dimensional vector space
for a fcc lattice, and an 80-dimensional vector
space for a hcp lattice. The eigenvector is
found corresponding to the lowest eigenvalue
of the quadratic form which represents the in-
teraction energy of the lattice. To find this
eigenvector involves transformations in the
configuration space which have no physical
counterpart; if the eigenvector happens to rep-
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resent a physically acceptable configuration,
then this is the configuration of lowest energy
—if it does not represent a physically accept-
able configuration, then the configuration of
lowest energy has an energy greater than the
lowest eigenvalue.

Nagai and Nakamura®® have already done the
calculations for the fcc lattice, and have found
that the lowest eigenvalue has an eigenvector
that corresponds to a physical quadrupole ar-
ray and thus gives the lowest energy configura-
tion. We have repeated these calculations us-
ing the IBM 7094 computer according to the
way outlined previously,'* and have confirmed
this result. Lattice sums were evaluated with-
in a sphere of radius 300 A. The lowest ener-
gy configuration for the fcc lattice is shown
in Fig. 1. Although we assumed 32 sublattices,
the calculations show that in the lowest state
there are only four distinct sublattices. In each
sublattice the quadrupoles are aligned along a
different diagonal of the cubic unit cell. The
nearest-neighbor distance in solid hydrogen
is 3.75 i\, and the quadrupole moment of the
ortho-hydrogen molecule is*® 0.110%107¢ cm?,
Using these values we obtain that the lowest
energy per molecule in units of degrees Kel-
vin (i.e., divided by the Boltzmann constant)

FIG. 1. The lowest energy configuration of quadru-
poles in the fcc lattice.
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is —28.9°K. We have performed the calcula-
tions for the hcp lattice, assuming 16 sublat-
tices. The lowest eigenvalue was found to be
-27.3°K. Unfortunately in this case the low-
est eigenvalue does not have an eigenvector

that corresponds to a physical quadrupole ar-
ray. (We tried to guess some configurations
and the lowest energy we could obtain is —16.5°K;
the corresponding configuration contains only
two distinct sublattices with quadrupoles aligned
along two different diagonals of the hexagonal
unit cell.)

We have shown by classical calculations that
the lowest energy of the fcc lattice is —28.9°K
and that the lowest energy of the hcc lattice
must be greater than —27.3°K. This shows that
the molecules in pure ortho-hydrogen at 0°K
will prefer to form a fcc lattice with orienta-
tions according to Fig. 1 rather than a hcp lat-
tice, in accord with the infrared-absorption
measurements of Clouter and Gush.!

It is a pleasure to acknowledge helpful dis-
cussions with Dr. J. M. Daniels. The calcula-
tions were performed on the IBM 7094 of the
University of Toronto.
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Harmonic generation's? and optical parame-
tric phenomena® have been, heretofore, lim-
ited to near IR frequencies because of lack of
suitable pump source at longer wavelengths
and also because of lack of known efficient and
phase-matchable* optically nonlinear materi-
als transparent in this region. In this paper
we report extraordinarily large amounts of
second-harmonic generation (SHG) in single-
crystal tellurium using a focussed, 10.6., con-
tinuous-wave, CO, laser® as the fundamental.
Thus, Te is the first elemental crystal in which
phase-matched harmonic generation with an
infrared source is achieved. (Earlier, reflect-
ed light harmonics from a Te surface have been
reported using a @-switched ruby-laser out-
put as the fundamental.®) Under our experimen-
tal conditions, a second-harmonic power (at
5.3 w) of 10 uW was obtained when a fundamen-
tal power of 0.17 W was phase matched over

a 9-mm length of the crystal. The measured
nonlinear coefficient of Te is about 4000 times
dgg of potassium dihydrogen phosphate. This
optical nonlinear coefficient is the highest of
any material reported to date and opens up the
possibilities of extending other nonlinear opti-
cal effects such as parametric amplification/
oscillation into the infrared with cw high-pow-
er CO, lasers.

Te is a member of Group VI B of the period-
ic table and is an elemental semiconductor.
Crystals of tellurium have 32 (Dg) point-group
symmetry and belong to the P31,221 space group
(Hermann-Mauguin notation)” assuring an ab-
sence of inversion symmetry necessary for
SHG and other nonlinear optical phenomena.
The crystal in its purest form (intrinsic, p
type)® is essentially transparent from about
5 u (band gap at 4 u) to wavelengths longer
than about 25 u.° Single-crystal Te is uniax-
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