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quired in a precision measurement. The re-
sults are for of,

8=4198+ 20 Mc/sec;

for Pe,

8=4167+20 Mc/sec.

The quoted uncertainties are twice the statis-
tical fluctuations in the data and are thought
to allow for the neglected corrections. Clearly
no large discrepancy, i.e. , greater than 1%,
with theory has been found. The quality of the
data indicates that a much higher precision
measurement should be possible. This will
be attempted in the near future utilizing com-
puter techniques to perform a detailed treat-
ment of the resonance line shape, and it is be-
lieved that a sensitive test of quantum electro-
dynamics will be provided.
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The coupling of nuclear spins by second-or-
der perturbation mechanisms was first pro-
posed and discussed by Ramsey and Purcell'
in explanation of experimental results obtained
by Hahn and Mmovell. ' Ramsey' showed that
the dominant contribution to the scalar coupling
constant, J, defined in terms of the coupling
energy by

E =hJI ~ I +hI ~ g ~ I

arises from the second-order perturbation the-
ory energy of the Fermi contact Hamiltonian.
We have calculated the first term in a pertur-
bation-theory expansion for the Fermi contact
contribution, JF, to the indirect scalar cou-
pling between the nuclear spins in hydrogen
deuteride.

In the presence of the dominant spin inter-
actions, the total Born-Oppenheimer Hamil-
tonian for the HD molecule can be written as

0 100 H 010 D 001'

where

(2a)

e2 e2 e2 e2
XH = — — + +—,

2H 1D 12
(2b)

I ~ H = (16wPfy /3)

l ( „) + ( „) 1 „, ( )

I ~ H = (16mP)Iy /3)

&& [6(r )S + 6(r )S2] ~ ID, (2d)

and where ry~-=r~-R~, S~ and I~ are the elec-
tron and nuclear spins, respectively, and A. is
a dummy parameter. The nonsymmetrical sep-
aration of the purely electronic Hamiltonian
into II, and XH,~ has been discussed elsewhere
where it has been shown that other properties
of the hydrogen molecule to zeroth order in
A are in good agreement with experiment. The
rapid convergence of such an electronic unsym-
metrical perturbation theory —which only exists
when the exact wave function is separable in
space and spin coordinates —has recently been
demonstrated by Bailey' for H, .

Using straightforward coupled perturbation
theory, JF is given by the energies linear in
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the scalar product IH fD to all orders in A,

1.e. ,

J =h '(E +RE + ~ ~ ) =J '+XJ + ~ ~ ~,

where the subscripts on the E's give the orders
in the three perturbations, respectively. JF
is thus

J' ' =h '(~~)(OI [f 5(r )+f 5(r )]S ~ S

Hl '1D ' Dl''IH] 1'

where g, = IO) is the lowest eigenfunction of H„

l0) = (wa ') 'exp[-(r +r )/a, ],

and the fNI are the solutions to the partial dif-
ferential equations

(IIO-EO)f~ ~ 0) = -(16wphy+3)

&&[&(r )-(OI6(r )to)]io). (4)

[Note also that (fHIgl+fH2~2)40 is the first-
order wave function in the perturbation Hpgp,

i.e., g», . In the traditions, l notation it would
be written

as+�

'(EO-E~) 'I n) (nl HOIOI 0).] The
solution to (4) for fHI, as first obtained by
Schwartz, is

f = (m/wII') — +—ln
)I +, . (5)

1H 0 0 0

The function fDI can be obtained by expanding
it and 5(rlD) in Legendre polynomials about
H ~fD1 =Z~D (~1H)Pl(cos~lH) ~d 6(rlD)
=+6 (wIH)PI(coseIH) with 6'=5(rIH-R)/
4wRrIH A.fter multiplying both sides of (4)
by r1H and taking the Laplace transforms, one
obtains the fD by direct integration. It is seen,
however, from (3) that for JF onlyfD is ne-
cessary, and furthermore that the method of
Schwartz and Tiemann, ' using directly

/ZAN
the

Laplace transform of fD', is applicable, i.e. ,

1 8

p 0 D H H H 4sl/a, ' D'

where fD ~aO exp[-R/aO]. Using these solu-
tions and the fact that for a singlet $0, (OIS,
~ S, IO) =-(OlS, '10) =-j, we obtain from (3) an
exact, closed-form expression for JF .

J 0=-h ~(16Ph/3)'y y e 'a '([2-C-In2]-[-(R/a ) '+21n(R/a )+2(R/a )]exp(-2R/a )

+ 2[(R/a ) '+2+2(R/a )]exp( 4R/a -))=-50.3 cps,
0 0 0 (6)

where C is Euler's constant 0.5772 ~ ~ and
where R has been taken as Re = 1.42a0. The
term in the first square brackets of (6) arises
from one of the two-electron terms of (3),
fH15(r2D), and gives the dominant, negative,
contribution to JF'. The term in exp[-2R/a, ]
is positive and arises from the one-electron
term of (3), and the negative, but negligible,
term in exp[-4R/a, ] arises from the remain-
ing two-electron term of (3). In a symmetri-
cal wave function the two two-electron parts
would be equal instead of highly disparate; how-
ever, the sums should, of course, be relative-
ly equal for both symmetric and nonsymmetric
go's. The total two-electron contribution to
(6) is -58.1 cps, while the total one-electron
contribution is +7.8 cps.

Had a variable screening parameter for the
nuclear charge, Z, been included in the divi-
sion of Hp+ A, Happ+ ~ ~, as is often done in de-
scribing the helium atom, JF would have been
roughly proportional to Z, and hence the ac-
tual JF' obtained depends critically on the cho-
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sen value of Z. A value of Z=1.05 gives the
minimum energy at Re, but since &E/sZ is
terribly small, we have chosen Z =1 for sim-
plicity. %hen the first-order correction, JF',
is obtained, this extreme Z dependence must
d1sappear.

In order to show how accurately Jp' approx-
imates JF itself, it is of interest to examine
the expression for JF".

J '=h-'E =(P')[(010l ~ (P -E ) l001)

+ (01 (F -E ) 1011)]. (7)

According to the rules of coupled perturbation
theory, g», is defined as the solution to an equa-
tion analogous to (4) with the inhomogeneity
(Eo~o-H„,) ~ 1001)+ (EO„-HOO, ) ~

l 010). Because
of the exponentials in g„and the smallness of
fH2 and fDI as compared with fH1 and fD2 the
dominant terms in this inhomogeneity are ~S1

2 f2DyH6(rlH)+flHyD6(r2D)] for which the
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partial solution is simply Sl S2flHf2D, which
is identical to the dominant part of goi, g«, in
the first integral of (7). Thus

F'= + ( Sl' 2 1H D2+loo loo)

We have not computed this part of JF since
it involves a great number of two-center inte-
grals. ' However, it does not seem unfair to
state that from the form of (8), JF' looks to
be smaller than JFD. (1) A. H,« is itself small
as demonstrated by the fact that A E,~-0.1 eV
while each term of A. +ypp contributes -15 eV
to RE~DO,

' and (2) there are not unusually large
contributions to JF despite the fact that A.Hl
diverges at rD1 =rH2=0, points at which g,
is a poor representation of the electronic wave
function. Thus the assumption that Jp' is a
good approximation to JF appears to be justi-
fled.

It should be noted that the uniqueness of the
present calculation lies in the ability to express
J& in closed form and to write down an explic-
it expression for (part of) JF for this particu-
lar nonsymmetrical go. No other calculation has
come close to giving such a JF' for its ge —re-
member that a variational calculation using a
symmetrical valence bond or molecular orbit-
al wave function is merely an attempt to find
approximate solutions to (4) —much less ever
considered the prospect of the JF'.

Experiment' gives JHD=+43 cps and compar-
ison with the calculated JF indicates the like-
lihood that the sign should be negative. Pre-
vious calculations &' have uniformly obtained
JFP positive, so that when in 1963 the author
obtained" a negative JF' by a well-defined ap-
proximation method, the result was met with
great skepticism.

Actually, me regard as relatively obvious
the reasons for the apparent failure of the pre-
vious calculations to give the correct sign of
J'F'. (1) The average energy' "approximation"
only gives the correct sign when the numera-
tor in the excited-state sum is positive-defi-
nite ~ note that it predicts the one-electron con-
tribution to be zero for finite 4E, whereas in
fact this contribution is finite (see also Das and
Bersohn") and therefore &E must equal zero;
and (2) the simple trial functions employed (see
Stephan" and O'Reilly") if applied" to the hy-
drogen-atom hyperfine interaction mould never
decently approximate the exact solution [Eq. (5)];
there is no test for "goodness" of a trial func-
tion other than degree of convergence. In fact,
Das and Bersohn's ' JF' appeared to be going

negative with an increasing number of terms
in the variational function, which shows explic-
itly the dangers inherent in the use of a simple
trial function. Incidentally, the divergence of
the Fermi self-couplings (see Das and Bersohn")
(J'F HH' and JF DD') when nuclear-size correc-
tions are neglected is observed trivially from
the equations analogous to (3).

The JHD (or J'HT or JDT) including the sign
is, in principle, experimentally observable,
being within the resolution of the best present-
day molecular beam techniques. We think that
this experiment should be given some priority
in molecular spectroscopy.

)Preliminary report given in Bull. Am. Phys. Soc.
10, 102 (1965).
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