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(1964). Most of these theorems require some assump-
tion about minimality, i.e. , lack of derivative cou-
plings, which is not necessary for the theorems pres-
ented here.

S. steinberg, Phys. Rev. 112, 1375 {1958).
~J. Bernstein, 6. Feinberg, and T. D. Lee, to be pub-

lished.
¹ Cabibbo, Phys. Letters 12, 137 (1964).
N. Cabibbo, Phys. Rev. Letters 10, 531 (1963).

SFor the definition of C for octets see ¹ Cabibbo,
Phys. Rev. Letters 12, 62 {1964); M. Gell-Mann, Phys.
Rev. Letters 12, 83 {1964).

Since C- and T-invariance violations are connected
{see reference 3), regular and irregular parts of the
currents will give rise, respectively, to real and im-
aginaryparts of the E; and Hz, respectively.

It is in fact equal to sin&/P2, see reference 8.
This dependence is fixed by being even under the

exchange a b, as well as under the simultaneous
transposition of A~, A~, and A, '. The first property is
required by CPT, the second by the behavior under C

of the irregular octet.
I am grateful to Dr. L. Montanet for a discussion of

proton-antiproton annihilation which stimulated this
remark.

~4A test for C conservation in' decays, proposed by
R. Friedberg, T. D. Lee, and M. Schwartz, is present-
ly being carried out; I am grateful to P. Franzini for
interesting discussions in this respect.

~ This difficulty is avoided by the authors of refer-
ence 2, who assume a small {10 2) violation of C in-
variance in strong interactions.
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I. Introduction. —The recent successful ap-
plication of the symmetry group SU(6) has opened
the floodgates of speculation. The original for-
mulation of SU(6) symmetry' suggested that it
was incompatible with relativity, and many at-
tempts to formulate a relativistic version"
were made. ' Except for the suggestion of Wyld'
and Mahanthappa and Sudarshan, ~ all these gen-
eralizations are plagued by difficulties of inter-
pretation. Here we investigate relativistic "gen-
eralizations" of internal symmetry groups.
Our main conclusion is that an algebra 8 that
includes that of the Poincard group must be
a semidirect product with 6'=8/3. The assump-
tions under which this result is derived are
(1) relativistic covariance and (2) that the mass
spectrum is not continuous. We have studied
several choices of $, giving relativistic gen-
eralizations of Wigner's supermultiplet theo-
ry, ' as well as GOrsey and Radicati's SU(6)
theory.

Q. General considerations. —It is our aim
to determine every real Lie algebra that satis-
fies certain conditions that are necessary for
a physical interpretation. Let 6' be the algebra
of the Poincard group, and let the 10 basic ele-
ments of 6' be chosen as follows:

6' =(L,P, L.g,

i, j=1,2, 3; p. =0, 1, 2, 3.

Let O'L & be the largest subalgebra of 6' that
commutes with P, and let 6'I be the homogene-
ous part of O'I T. Then the structure of 5' is

(2.1)

(2.2)

where the symbol I- denotes semidirect sum;

(2.3)

The semidirect sum will always be written with
the invariant subalgebra last.

Let 8 be an algebra that contains 6' as a sub-
algebra, and let QLy be the largest subalgebra
of 6' that commutes with Po. Then we shall
show that the physical interpretation requires
the following structure for 6:

(2.4)

(2.5)

(2.6)

(2.'I)

From (2.4) and (2.5) there follows that (P&}
is an invariant subalgebra of Q. If (P&}is an
invariant subalgebra of Q, and if in addition
the mass operator P&PI" is an invariant of 6,
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then (2.6) and (2.7) follow. This important re-
sult was obtained by Michel. ' Here we shall
assume only that the spectrum of P~PI" is not
continuous, and not, a priori, that (P&'Iis an
invariant subalgebra.

First we show that (2.4) is necessary. Let
S be a particle-like representation of Q (i.e.,
one in which the spectrum of P, is bounded be-
low by m, say) and let X be the Hilbert space
in which the operators of S act. Let

SCAN
be

the subspace' of X on which P, has the eigen-
value m, and let X)1 be the representation of
gi induced in Xg. The basis vectors of Xl
are, for an appropriate choice of S, the states
of a single particle at rest; we may call them
la), n =1,2, ~ ~ ~, where a stands for discrete
quantum numbers like spin, charge, and strange-
ness. Let ai, i =1, 2, ~ ~ ~, be a maximal set
of basis elements in 8 that are linearly inde-
pendent modulo QLT. I,et U(e) be a unitary
operator 1+~;a;, where the e; are arbitrarily
small real numbers. Then U(c) I o.) =

I o. , e) is
not in 3CI. Thus, the elements of 8 that are
not in Qgy may be used, in addition to the la-
bel e, as labels to denote those vectors of X
that are close to Xl. Let us decompose this
part of X into a direct sum of subspaces X~,
where Xz consists of all vectors i a, e) with
fixed e. Then X~ contains all the states of
small velocity of a particle with mell-defined
internal quantum numbers. Now we come to
our main point, namely, the dimension of X~
must be three. It is at least three, because
the three components of momentum are inde-
pendent of each other. It is not more than three
because the principle of relativity requires
that, if a particle is found in a well-defined
state by an observer at rest relative to it, then
its state must likewise be well defined as seen
by an observer moving slowly relatively to it.
It follows that the three operators LO;, when
adjoined to Ql y, complete 8, and we have
proved (2.4).

Let aC O'I y and consider the commutator

(2.10)

where the matrices CA»B form a real, finite-
dimensional representation of the Lorentz al-
gebra (L»). Such a representation is a direct
sum of tensor representations. The index A
may be replaced by an aggregate of indices
(AI ~ ~ in, a) where all excePt the last one are
four-vector indices, such that (2.10) takes the
form of a set of equations[s,L ]

A1 ~ ~ ~ An, a pv

+ ~ ~ ~ +i(g
v

n )s
A.„v P, A. 1

~ z„,g
(2.11)

with n =0.1, ~ ~ ~ . The range of the index a will,
in general, depend on n.

The structure constants of 8 itself, defined
by

=C ~1' ' '&n~
A. 1 ~ ~ ~ Ai, a, P1 ~ ~ P~, b

XS
~1 '~n, c' (2.12)

the assumption that the spectrum of P&PI" is
not continuous. Then the matrices C(a)i~ are
antisymmetric and form a faithful representa-
tion of the subalgebra (Li&) of QL. Therefore,
Q& must have an invariant subalgebra S, say,
such that 8 commutes with (P;], and (L;&) is
the factor algebra QL/S. Thus we have proved
(2.6); (2.7) follows immediately by the observa-
tion that the matrices C(a)f2 in (2.8) and in (2.9)
are the same. Note that 8 commutes with (P&}.

Let sA, A = 1, 2, ~ ~ ~, be a basis in the algebra S;

[a, L J=-C(a). L . +5,.
2 Oy

where b E- Ql y. Calculating the commutator
of both sides of (2.8) with P, we obtain

[a, P.] = -C(a) P.
2

which proves (2.5).
In (2.9) let a E QL and let us now introduce

(2.8)

(2.9)

must of course satisfy the usual conditions that
make s a Lie algebra. In addition, (2.11) and
(2. 12) are consistent if and only if (2.12) is
Lorentz covariant.

In general S will include elements with no
vector indices. These commute with 6' and
form the algebra S, of the internal symmetry
group.

III. Examples without internal symmetries. —
To construct the smallest 8 that is not simply
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a direct sum of So and 6', let some of the ele-
ments of S be labelled by a single vector index,
i.e. , s &6 $, p, = 0, 1„2,3. Then the cornmuta-
tor [s&, s„]=—s» is an antisymmetric tensor.
If s» = 0 then we may take 8 to consist exclu-
sively of {s~j, thus So=a. In this example QL

={Li&}/{s&}is isomorphic to the direct sum

U, E„where F., is the three-dimensional Eu-
clidean group. If s» w 0, then it cannot be ex-
pressed linearly and covariantly in terms of
the s~, hence s~v would be independent elements
of ps

For another example, suppose that s» =-s»
ES. Then it is possible to write covariant com-
mutation relations, for example

I 1
k' (h 2

(3.2)

The algebra QL is {L;&}I-{s&~}.From the com-
mutation relations (2.11) and (3.1) it follows
that {s»}commutes with {Li&-s;&}; therefore
QL is isomorphic to SL(2, c)&SU(2), where the
second term is {Li& s,&} and -not {L;&}. The
unitary irreducible representations of O,'L are
given by a pair of unitary irreducible represen-
tations of the invariant subalgebras; let us con-
sider briefly those representations of QL that
are obtained by choosing the trivial represen-
tation for the second one.

The unitary irreducible representations of
SU(2, c) were given by Naimark. " They may
be reduced according to its compact subalge-
bra, which is isomorphic to SU(2), and are
then found to contain an infinite sum of irre-
ducible representations. Each irreducible rep-
resentation of the SU(2) subalgebra with spin"
larger than some minimum value occurs pre-
cisely once. These representations may be
associated with the rotational levels of nuclei
for fixed isotopic spin. '

It is important to realize that, in the type
of representation just considered, the opera-
tors L;j and si * are equal only in the rest sys-
tem, i.e. , on XL. Because the commutation
relations between L~j and s;j with accelerations
and with momenta are entirely different, this

=-i(g s -g s -g s +g s ). (3.1)
pA. vp pp v4 vA pp vp p.k.

This algebra is of order six'; it is isomorphic
to SL(2, c). It has a two-dimensional represen-
tation

equality does not hold in other reference sys-
tems. In fact, on states with momentum p,

(0&L. . =L. . -i P. — -P.
ij ij i Bp. j sp j'

2

where L;j"' are the spin operators in the rest
system, while

p (0)
pv p, v Ap

Wigner's supermultiplet theory5 is based on
the algebra SU(4) given by the matrices

I =-,'(18T ), s. . =-,'(o 81),a a' ij k

s =g(v 8T ).
gj~a k a (4.2)

The relativistic theory is constructed in the
same way, and gives the algebra S:

I =-, (18T ), I =—.(18T ),
1

a a' a 2i a'

s. , = 2(o 81), s . =—.(g.81),I 1
ij k '

Oi 2i i

S = g(g 8T ), S . = .((7. 8)T~

1 1

ija k a '
Oi a 2i i a (4.3)

Because (3.1) and (4.1) are covariant we have
covariant commutation relations for S, given

where A&~ is the 4 by 4 matrix of the Lorentz
transformation that transforms P& to rest.
We have Lij = sij bu't Lij 9 sij for states
with pc 0.

IV. Example with isotopic spin. —Let So={Is},
where Ia, a = 1, 2, 3, are the isotopic spin opera-
tors, and let us construct a relativistic gener-
alization of Wigner's supermultiplet theory.
Both So and the algebra {s»}considered in the
preceding section have two-dimensional repre-
sentations, given by (3.2) and by I~ =-,'T~. In
these representations we may calculate anti-
commutators as well as commutators; it is
particularly important that those of {s»}may
be expressed covariantly:
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by (3.1) and

[I,I ]=il, [I,I ']=iI ', (I ', I ']=-iI, (4.4}

(4.5)

-g s +g s ),
vA. p.p, a vp p.A, , a ' (4.7)

= i(g g -g g )I 2E-' I
p.h vp p, p vh. c p, vh. p c

—15 (g s —g s
ab p.A. vp p.p vA.

-g s +g s ),
vA. p.p vp p.~

(4 8)

where s&v, c =gp, ~vp~~p~~saT, c~ and z, j, k

and a, b, c are cyclic permutations of 1, 2, 3.
These are the commutation relations of SU(4, c).

[I,s =is, I ', s ]=-is, (4 6)a' pv, b pv, c' a ' pv, b pv, c'

[s,s ]=-i(g s -g s
p, v A.p, a p.i. vp, a p, p vA, a

The algebra QI is [Li&}l-SL(4, c). As in the
previous example fi.i&-si&} commutes with SL(4,
c), so QI is isomorphic to SL(4, c)%SU(2).
Again we may take the trivial representation
for SU(2), and construct unitary irreducible
representations of SL(4, c). These are sums
of unitary, irreducible representations of SU(4);
Thus one representation of SL(4, c) is an infin-
ite set of Wigner supermultiplets. We repeat
the warning that it is only on XJ that I.;& =s;&.

V. Example with unitary symmetry. —Let
6, =(a~}where xs, a = 1, ~ ~ ~, 8, are the unitary
symmetry operators, and let us construct a
relativistic generalization of Garsey and Radi-
cati's supermultiplet theory. ' In (4.3) replace
~Ta, a =1,2, 3, by za, a =1, - ~ ~, 8, taking for
the latter one of the three-dimensional repre-
sentations. Then the matrices in the left-hand
column satisfy the commutation relations of
SU(6) and those in the right-hand column com-
plete this to 3, which is isomorphic to SL(6, c).
The commutation relations are given by (3.1),
(4.7), and

[~ , i ]= if i , [~ , x '] =if i I, [~ ~, i ~] = -if

[X,s ]=[X ', s ]=0,

[X,s ]=if s, [i ', s ]=-if sa' pvb ab pvc' a ' pvb ab pvc'
C 5 C[s,s ]=—(g g -g g )f

p, v, a' ip, b 4 pa vp pp va ab c 4 p. vip ab c

c
(g s —g s -g s +g s2 ab pA vp, c pp vA. , c vk pp, c vp p1, c

-im6 (g s -g s -g s +g s ).ab p.A. vp p.p vA. vk. p.p vp p, A.

The algebra 8& is [I,i }pSL(6, c) and is iso-
morphic to SL(6, c)SSUt2) where the SU(2) gen-
erators are I.qj-s~j as in the other example.
Taking for SU(2} the trivial representation, we
may represent elementary particles by unitary
irreducible representations of SL(6, c), which
are infinite sums of representations of SU(6).
The full relativistic group is given by (2.7) where
6 is isomorphic to SL(6, c). The translations
commute with S and the commutation relations
between g and the generators of the homogene-
ous Lorentz group are given by (2.11). The
symmetry is not "intrinsically broken"; if mass
splittings are ignored the theory contains an
exact symmetry including both the Poincard

group and the internal quantum numbers.

~F. Qursey and L. A. Radicati, Phys. Rev. Letters
13, 173 (1964).

R. Delbourgo, A. Salam, and J. Strathdee, Proc.
Roy. Soc. (London) A248, 146 (1965); T. Fulton and
J. Wess, to be published; W. RUjhl, to be published.
K. Bardacki, J. M. Cornwall, P. G. O. Freund, and
B. W. Lee, Phys. Rev. Letters 13, 698 (1964); 14, 48
(1965).

3H. W. Wyld, to be published.
4K. T. Mahanthappa and E. C. G. Sudarshan, to be

published.
~E. P. Wigner, Phys. Rev. 51, 105 (1937); P. Fran-

zini and L. A. Radicati, Phys. Letters 6, 322 (1963).
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6L. Michel, private communication. See L. Michel,
Phys. Rev. 137, 8405 (1965); L. Michel and B. Sakita,
to be published.

82 is not a proper subspace. A more appropriate
terminology would use the concept of the rigged Hil-
bert space, but for our purposes these trimmings are
not essential. For a summary of the theory of rigged
Hilbert spaces see A. Bohm, to be published.

If for the s» we take the commutation relations {3.1)
below, then s& and s» span the algebra of the 4+ 1
de Sitter group. In a separate publication we show that
this case fits the hydrogen atom.

~%'e may attempt to reduce this to three by taking

s& „to be self-dual, but because of the indefiniteness
of the metric we must introduce an imaginary factor:
s& =is& . Then is» are new elements of the real
Lie algebra, and we still have six elements.

M. A. Naimark, Les Representations Lineaires du

Groupe de Lorentz (Dunod, Paris, 1962). This book
discusses SL(2, C). For SL(n, C) see M. A. Naimark,
Mat. Sb. 35, 317 (1954), and 37, 121 (1955) [translated
in American Mathematical Society Translations (Amer-
ican Mathematical Society, Providence, Rhode Island,
1958), Ser. 2, Vol. 9, pp. 155, 195).

~~A. O. Barut and A. Bohm, "Dynamical Groups and
Mass Formulae» (to be published).
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PION PRODUCTION IN HIGH-ENERGY MUON-
NUCLEON COLLISIONS. P. L. Jain and M. J.
MeNulty I Phys. Rev. Letters 14, 611 (1965)].

Equation (2) should be

h(e, q't=L ( )
4m

a with A'=~,
hv

~ ~ ~

~,) with finite h.
hv q'+A'
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