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One of the most interesting proposals advanced
to explain the discovery of a decay mode K,°
-7nt+7~ is the suggestion that C invariance
is violated directly at the level of strong inter-
actions. Such C-invariance violation could ap-
pear at the level of SU(3)-breaking interactions,
as originally proposed by Prentki and Veltman,!
or with a somewhat smaller strength, compar-
able to that of electromagnetic interactions,
as porposed by Lee and Wolfenstein.? In this
note we wish to consider a more extreme pos-
sibility, namely, we will propose that C need
not be at all a basic symmetry of strong inter-
actions.

For a limited but important class of phenom-
ena we show that the predictions of C and of T
invariance follow (with different degrees of ap-
proximation) from the CPT theorem, P conser-
vation,® and the approximate isotopic spin [SU(2)]
and SU(3) symmetries. That such things could
happen has been known for a long time.*

The class of phenomena for which theorems
are actually stated here includes the coupling
of pseudoscalar particles to spin-3 baryons,
and the coupling of vector mesons to conserved
currents of spin-3 baryons and of spinless me-
sons. Although more extensive theorems can
be stated, it is both amusing and interesting
to point out some cases where theorems of this
kind are not valid, except perhaps under more
stringent conditions. These are the coupling
of scalar and of axial-vector (17) particles to
spin-3 baryons. The interest of this fact in
respect to the present theory has been pointed
out by Pais, and it is hardly necessary to em-
phasize its possible implications.

Let us first consider theorems which deal
with the coupling of pseudoscalar mesons to
spin-3 particles:

T,.—The P-conserving coupling of a pseudo-
scalar neutral particle to a spin-3 particle on
the energy shell is T invariant.

T, —If isospin is conserved, the above results
are generalized to 7N couplings (with N on the
energy shell).

T,.—In the limit of exact SU(3) the above is
generalized to the couplings among octet pseu-
doscalar meson and the baryon octet. It is easy
to see that theorems analogous to T,-T, cannot
be proved for the case of scalar (0") particles
interacting with baryons, unless more restric-
tive assumptions are made.

Let us consider next the matrix elements of
a Hermitian conserved vector current among
two states of the same particle. Write such
a matrix element in the form

: ) 1
b1 1) = (p )[Fl(kz)yu +F2(k2)2M0/.wku

1
2y 2
+Hy ()g0k (), 1)
in the case of a spin-3 particle, and
(p’ l]"i 1p) =F3(k2)(P +P')‘i +H2(k2)(P—P')#, (2)

for a spin-zero particle; F,, F,, and F, are usu-
ally called first-class form factors, H, and H,
second-class form factors.® From the fact

that j, is Hermitian (for =0,1, 2, 3) and con-
served, there follows

T, —H,(k®)=H,(k?)=0; F,, F,, and F, are
real, i.e., the same limitations one would ob-
tain from C and T. Furthermore,

T4 —1If the scalar (or PS) particle in Eq. (2)
is self-conjugate under CPT, then also F,=0
and the particle is strictly neutral.

These results apply directly to diagonal ma-
trix elements of the electromagnetic current
which has all the required properties. The
results can be generalized by the further as-
sumption of exact isospin conservation and SU(3)
invariance:

Ts.—The matrix elements of the isospin cur-
rents among members of a single isospin mul-
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tiplet with either spin 0 or spin 3 obey all for-
mal requirements of T conservation.

This is evident if one notes that the current
j3 has the properties required for theorem T,
and all other matrix elements can be obtained
from those of j3.

If we assume that the nonstrange vector me-
sons (p,w, @) are coupled to conserved currents
(isospin currents, Y and B currents), it follows
from the above theorems that nuclear forces
should be T conserving to the extent to which
nucleon-nucleon interactions are due to the
single exchange of m, 7, and the said vector
mesons.

These results can also be extended to SU(3)
by the following theorem:

T,.—In the limit of exact SU(3) the above re-
sults of T, apply to matrix elements of the SU(3)
currents j#Z (¢=1,-.-,8) among octets of bary-
ons and of pseudoscalar mesons.

This theorem covers some nondiagonal ma-
trix elements of the electromagnetic (em) cur-
rent; in particular we obtain

Tg.—T noninvariance in the Z°~ A%+y (real
or virtual v) amplitude is at most of the first
order in the SU(3)-breaking interaction.

T,.— The matrix element of the em current
among an 7° and a 7° is of the first order in
the symmetry-breaking interaction.

The search for T-invariance violations in
correlations of the decay Z°~ A°+e*+e™, and
for the C-invariance violating decay mode 1°
~7%+e¥ +e~ have been recently proposed®;
theorems T, and T, suggest that these effects
could be smaller than expected on the basis
of simple estimates. It is again easy to see
that theorems T, to T, cannot be simply extend-
ed to axial-vector currents.

Effects on leptonic weak interactions.—In a
preceding paper’ the author has suggested a
possible way of introducing CP nonconserva-
tion in weak interactions. This scheme assumed
that the weak currents were built in the usual
way® from a single octet J ;* of mixed C and
P properties:

i . t,R . i1 i, R i,1
J“ ]# + ]p. +g“ +gu .

The j’s are vector, the g’s axial-vector cur-

rents; the superscripts R and [ stand for regu-

lar and irregular C behavior.® In that paper

C conservation in strong interactions was tacit-

ly assumed, so that the em current was natu-

rally assigned to the regular octet ju”R

966

In the present theory in which we do not as-
sume any a priori C behavior for the strong
interactions, the following assumption is more
natural:

(A) The electromagnetic current and the weak
vector currents belong to the same octet, i.e.,
tojul’R +j“z,l‘

With respect to the properties of the ampli-
tudes for weak processes of the form B - B’
+l+v or P- P’ +]+v, where P represents a
pseudoscalar meson, the weaker assumption
of reference 7 implies that in the limit of ex-
act SU(3) the irregular currents contribute on-
ly to the second-class form factors H,(k?) and
H,(k?) [see Egs. (1) and (2)] and the “axial mag-
netism” term.

The new assumption, which ties the em and
vector weak currents, has stronger implica-
tions:

T,, —Under the above assumption it follows
from T and T, that there is no T-invariance
violation in weak vector processes in the limit
of exact symmetry, i.e., H,(k?), H,(k?), and
the ratio Im[F;(k%)]/Re[F;(%?] (=1,2,3) are
at least of the first order in the symmetry-
breaking interactions!® for AS=+1 decays and
for nondiagonal AS =0 transitions like Z% —~ A°
+ef +v. For AS=0 diagonal transitions (beta
decay or 1t~ 7%+e™ +v) these quantities are
at least of order (137)~! (from theorem T§).

Since the terms in H, and H, give contribu-
tions proportional to the lepton mass, these
conclusions are only of practical interest in
the case of muon emission. A process which
was suggested for experimental study in refer-
ence 7 is the decay K+~n°+u++uu. For this
process we are able—under assumption (A)
—to reach an even stronger conclusion than
the one suggested by T,,, namely,

T,,.—Under assumption (A), time-reversal
invariance violations in K, 3 are at least of
the second order in the SU(3)-breaking inter-
action.

To prove this theorem we first note that the
time-reversal noninvariant correltion G(u)

. [E(u)xZ(n)] is proportional to

Im(FH,*)=-Re(F ;) Im(#H,) +Im(F,) Re(H,).

In this expression only Re(F,) is different from
zero in the SU(3) limit.!* Thus we have only

to prove that Im(#,) vanishes up to the second
order in the symmetry breaking. Consider the
general matrix element of jui’l among two
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pseudoscalar mesons M, and M_:
. 1,1 . a b
MM ) =iImE ) (P +p7)

a . b
+ImH ) (p"=p )u]-

To the first order in the symmetry-breaking
interaction, contributions to Im(H,) have the
following dependence!? on (a, b, ):

Im(Hz)I @b,

—aspa? 0 % a8 850090 sp0r®)
500 sp00A8) +5p0 %) sp(hOa);

however, if we consider j,¢s/ to be the irregu-
lar part of the electromagnetic current, j, 3,/
+ (l/w/?i)jug’l, all its diagonal matrix elements
(i.e., when M, =My =1%,7°%n,K*,K°) should
vanish (see theorem T,), from which we derive
a=B=y=0, which completes the proof of T,,.

The last theorem again puts the emphasis
on the usefulness of an accurate measurement
of T-invariance violation in Ku , decays; the
finding of considerable violation (larger than
1 or 2%) would certainly exclude our assump-
tion (A).

The theorems T, to T, show that in a certain
class of “simple” strong-interaction phenom-
ena, violations of C and T symmetries can be
strongly limited by parity, Hermiticity, and
electric-current conservation, combined with
isospin or SU(3) symmetry. Considering the
technique of proving these theorems, it is clear
that the proofs go through because in all instances
we are considering either diagonal matrix ele-
ments of Hermitian operators (as in T,, T,,
and T,) or matrix elements which are equiva-
lent to these through some symmetry operation
[SU(2) or SU(3)]. It is quite possible that these
theorems can be generalized by making use
of SU(6) symmetry, and that they can be ex-
tended to cover the case of matrix elements
among states in the same SU(6) multiplet, like
N and N*, pseudoscalar and vector mesons.

In conclusion we have pointed out that a theo-
ry in which there actually is no C invariance
is in many “simple” cases equivalent to that
proposed by Prentki and Veltman, in which C-
invariance violations appear only at the first
order of symmetry breaking. Our brief discus-
sion on the technique of proving the theorems

T, to T4 suggests that larger C-invariance break-
ings might occur (within this theory) if one goes
away from the simple cases, namely, if one
studies “complicated” processes, where more
than three particles are involved in an essen-
tial manner.

~_By essential I mean that the main contribu-
tion to the process should not come from periph-
eral graphs which involve three-particle ver-
tices. Among processes which seem promis-
ing according to these rules are proton-anti-
proton annihilations'?® and the decay 7 - at+n
+7%.1 Another class of possibilities is suggest-
ed by the lack of theorems equivalent to T,-T,
in the case of vertices involving 0% and 1% par-
ticles.

In the field of weak interaction the theory
presented here—integrated by assumption (A)
—reproduces the results of reference 6, but
gives stronger limitations on the amount of
C-invariance violation in vector currents. The
smallness of the rate of K,~7n*+7~ is again
a difficulty to be explained.!®

I am deeply indebted to J. Prentki and
M. Veltman for long discussions on their pro-
posal, which stimulated many of the above ideas,
to Dr. A. Pais for encouragement and a clarify-
ing discussion, and to Dr. P. Franzini, Dr.

T. D. Lee, and Dr. G. Feinberg for private
communications on their work on this subject.

I owe special gratitude to Professor A. Pais
for the warm hospitality I found at the Rocke-
feller Institute where this work was done.
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I. Introduction.—The recent successful ap-
plication of the symmetry group SU(6) has opened
the floodgates of speculation. The original for-
mulation of SU(6) symmetry* suggested that it
was incompatible with relativity, and many at-
tempts to formulate a “relativistic version”
were made.? Except for the suggestion of Wyld®
and Mahanthappa and Sudarshan,* all these gen-
eralizations are plagued by difficulties of inter-
pretation. Here we investigate relativistic “gen-
eralizations” of internal symmetry groups.

Our main conclusion is that an algebra @ that
includes that of the Poincaré group must be

a semidirect product with ® =@/S. The assump-
tions under which this result is derived are

(1) relativistic covariance and (2) that the mass
spectrum is not continuous. We have studied
several choices of §, giving relativistic gen-
eralizations of Wigner’s supermultiplet theo-
ry,® as well as Glirsey and Radicati’s SU(6)
theory.

II. General considerations.—It is our aim
to determine every real Lie algebra that satis-
fies certain conditions that are necessary for
a physical interpretation. Let @ be the algebra
of the Poincaré group, and let the 10 basic ele-
ments of ® be chosen as follows:

@ ={Lij,Pu,Li0},

,7=1,2,3;

p=0,1,2,3.
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Let ®; o be the largest subalgebra of ¢ that
commutes with P, and let & be the homogene-
ous part of ® ;7. Then the structure of @ is

e ={e (2.1)

L1 Lo

G’LT=G’LI-{P“}, (2.2)

where the symbol | denotes semidirect sum;
G‘L={Lij}. (2.3)

The semidirect sum will always be written with
the invariant subalgebra last.

Let @ be an algebra that contains @ as a sub-
algebra, and let Gy 7 be the largest subalgebra
of ® that commutes with P,. Then we shall
show that the physical interpretation requires
the following structure for @:

Q ={aLT,L0i}, (2.4)
aLT=aLk{P“}, (2.5)
GL={LZ.].}I- s, (2.6)

Q@=0CFS. 2.7)

From (2.4) and (2.5) there follows that {Pu}
is an invariant subalgebra of @. If {P,} is an
invariant subalgebra of @, and if in addition
the mass operator P“P# is an invariant of @,



