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Recent heavy-ion experiments involving both
single-particle and cluster transfer at energies
well above the Coulomb barrier exhibit several
unusual and unexpected features. ' 3 The angu-
lar distributions are smooth, in striking con-
trast to the oscillatory distributions character-
istic both of transfer reactions initiated by
protons and deuterons, and of elastic heavy-
ion scattering. Furthermore, the data are in
disagreement with the strong oscillatory cross
sections predicted by previous theoretical dif-
fraction models for high-energy heavy-ion trans-
fer reactions. 4

%hen plotted as a function of the linear-mo-
mentum transfer, the experimental angular
distributions fall on a curve which appears to
be independent of the nature of the projectile
and target as well as independent of the inci-
dent energy and the angular momentum trans-
ferred. Typical results for proton transfer
leading to a variety of final states' 3 are shown
in Fig. 1(a). Deuteron'~' and alphas transfer
r eactions are compared with the proton data
in Figs. 1(b) and 1(c). All of these data show
the same monotonic dependence on q, the lin-
ear-momentum transfer, and the slope seems

to depend only on the mass of the transferred
particle.

The disagreement between diffraction theory
and experiment could perhaps reflect a failure
of strong-absorption models to represent these
reactions adequately. Such a failure is quite
unlikely, however, in view of the significant
successes that strong-absorption (or cutoff)
models have had in explaining experimental
data from both elastic and transfer scattering
at lower energies, ~' as well as the success for
reactions induced by lighter projectiles. '~' An-
other possible explanation is that the smooth
distributions arise from the presence of a very
diffuse surface for these systems. However,
a large surface thickness is inconsistent with
elastic-scattering information for the same sys-
tems. '

The purpose of this note is to show that a
satisfactory explanation of these phenomena
is obtained with a sharp-cutoff diffraction mod-
el, if both finite-range effects and recoil ef-
fects are included.

Earlier treatments of heavy-ion transfer re-
actions~~' have neglected specific considera-
tion of recoil effects; i.e., terms of order 1/A
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FIG. 1. (a) Differential cross sections for proton transfer in several typical heavy-ion reactions (references 1
and 3). The energy quoted is the laboratory energy in each case. The solid curve shows the q

3 dependence ob-
tained from the model in the text. (b) Same as Fig. 1(a) for deuteron transfer (references 1 and 2). (c) Same as
Fig. 1(a) for alpha-particle transfer (reference 3). The dashed line shows the q

3 dependence, while the solid
line is obtained from the more exact expression in Eq. (9).
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where A is the ratio of the mass of one of the heavy aggregates to that of the transferred cluster.
In addition to neglecting recoil terms, most diffraction treatments also use a zero-range approxi-
mation. 4

The rearrangement process may be written in the form (a+c) +b-a+ (b+c), where the parenthe-
ses indicate a bound state, i.e., in the initial state "~," the heavy aggregate b is indicent on the com-
pound system (a+c) with relative momentum k;, and in the final state "f," (b+c) and a have relative
momentum kt-. In the distorted-wave Born approximation, the matrix element for the transition i f-
ls

~u *(r')V (r+r')u. (r+r')y. '"' k, ; r-
l 2

where u; and uf are the bound-state wave func-
tions for c in the initial and final states, re-
spectively, and the mass ratios, A; =(ma+me)/
me and Af (mb +me)/me are assumed to be
large compared with unity. The vector r is
the relative coordinate between the centers
of mass of the heavy aggregates a and b, while
r' is the coordinate of c relative to b. The
diffraction model for the distorted wave y,.

'+'

or )t
' ' is formulated in terms of an undis-

torted plane wave modulated by a function 8;
or Bf which vanishes inside a sphere of ra-
dius Ro as well as in the shadow scattering
region. '

Our approximation consists of keeping terms
in 1/A. and 1/Af in the phase of the distorted
waves and neglecting such terms when they
appear linearly in 8; and Bf. This procedure
is based on the observation that recoil momen-
tum proportional to 1/A will in general be
quite small compared to A, or 0 or to the mo-
mentum transfer q = [(A;-1)/A, k;-kf. Con-
sequently, matrix elements proportional to
1/A can in general be neglected; however, 1/A
terms in the phase, although small, can pro-
duce significant effects.

With this approximation, Bi and Bf depend
only on r, and the amplitude of Eq. (1) becomes

T. = Jdre B (r)B (r)G. (r.),

where the transfer function is

i r'
G. (r) = Jdr'u (r')V (r+r')u. (r+r')eif f ae i

and includes a recoil factor e'P with p given
by

p=-[k./A. +k /A ].

Consider now the simple case in which all

spin effects are neglected and (i) the single
particle states u, , uf may be represented by
harmonic oscillator wave functions; (ii) in the
initial state, c has zero orbital angular momen-
tum relative to a, and in the final state it has
orbital angular momentum L with projection
M; and (iii) the finite range potential Vae is a
Gaussian. ' The evaluation of G~f

~ (r) by the
standard techniques requires the expansion of
each of the three functions of the integral,

ufo'
iM(r'), u;(r+r') =—Vac(r+r')ui(r+r'), and

e2P'r, in spherical harmonics. If the z axis
for the integral over r' is taken along p, and
the integral over the azimuthal angle is per-
formed, one obtains

with

LM ,2 L , , l'a, (r) ~P J dr'r' u (r'j)(Pr')u . (r, r')

The product of af LM(r), which decreases
rapidly with increasing r, and BiBf» limits
the radial integral over r to the surface re-
gion. To illustrate the effect of |".L~ ~ in

2f
Eq. (2), we assume for the next feW paragraphs
that the surface region may be represented
approximately by a delta function 5(r ffo), -
angular dependence in the boundary conditions
8;By limits the integral over the solid angle
in r space to an annular region which can be
approximated by the ring-locus model. '~ If
the z axis in r space is chosen in the p direc-
tion, the general adiabatic conditions" require
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that the ring locus of annulus lie in a plane per-
pendicular to p, or at 8 = w/2, where 6 is the
polar angle. Thus, as in the Blair-Dar theory,
the spherical harmonic YfiM(QP~) of Eq. (5)
is evaluated at 8 = w/2, and the angular integral
depends only on the azimuthal angle. The ex-
pression obtained finally for the amplitude is

"~i'M""O' f '""'f '"O'
LM M LM

(7)

where JM is the cylindrical Bessel function of
order M.

The amplitude of Eq. (7) includes the usual
Blair-type phase rules as special cases. First,
it is evident that in the zero-range approxima-
tion, V~c(r+r') =6(r+r'), the spherical har-
monic YLM(A, ) appearing in cc LM(r') of Eq. (2)

becomes YLM(Q ); and that the r integration
immediately yields the usual phase rules for the
cross section, since L+M must be even on the
ring. Secondly, even with finite-range potentials,
if the recoil terms proportional to 1/A are ne-
glected, the recoil momentum p vanishes. Then
the radial integral in Eq. (6) is zero unless f =0
[due to the term jf(0)], and consequently, the
angular integral in Eq. (6) yields 5L f . Eq. (7)
becomes

r ~Z (qIt )P (ii/2),
LM M

(8)

which, as in the zero-range theory, also obtains
the usual phase rules. Thus, in either the zero-
range approximation or the approximation that
neglects terms -1/A in the phase, the model
predicts strong oscillations with L-dependent
phases, in striking disagreement with the ex-
perimental data.

However, for the case described by the con-
ditions (i), (ii), and (ito, we have calculated
the coefficients a&,L~ M(r) in Eq. (6) by numeri-
cal integration without neglecting the recoil mo-
mentum. This calculation yields nonvanishing
coefficients afiL~ M(r) for all f'. The important
thing to note is that the restriction that (f'+M)
be even, due to the factor Pfl (w/2), does not
require that L+M be even. In fact, in the cases
considered, all substates, -L «M «L, make
nearly equal contributions to the cross section,
when 1/p is of the order of the range a of the
bound-state wave functions. As a result the
oscillatory nature of the angular distribution

~o (e)/du=5 iZ. L, M2
1

disappears.
For L &1 and q large, the transfer function

G. L, M of Eq. (2) can be evaluated in closed
2

form, and the resulting angular distribution
is

d(T

= q 'exp(-P'a'/6),
q &&1 Q

(9)

in agreement with the results of the numerical
computation. The details of this evaluation are
somewhat involved and will appear in a sepa-
rate publication. For pa &1 the exponent in
Eq. (9) is very small, and the variation of o

with q is independent of L, B~, and any other
nuclear parameters. " These predictions are
in qualitative agreement with the available data
which are compared with the q

' prediction
of the theory in Figs. 1(a) and 1(b). The dif-
ference in slope for alpha-particle transfer
[Fig. 1(c)] is also predicted by our model and
is due to the larger value of P in Eq. (9).

A further prediction of the model in qualita-
tive agreement with recent experiments is that
of the inhibition of population of low-angular-
momentum states in the final nucleus. 'y' Such
an effect is to be expected classically since
the transferred particle c has a fraction 1/Af
of the linear momentum in the entrance channel.
When c is captured by b near the nuclear sur-
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FIG. 2. Ratios of the cross sections predicted by the
model with recoil to those obtained by neglecting re-
coil (p = 0) are plotted as functions of the incident ener-
gy for a typical case of single-nucleon transfer. The
cross section for small I transfers are inhibited at
high energies.
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face Rb, an angular momentum I.c =&;Ab /A;
is given the final nucleus. Consequently, one
would expect to find states of angular-momen-
tum transfer =I. populated with high probability.
Figure 2 shows the ratio of the predicted cross
section with recoil to that with no recoil (p = 0)
for a typical case.

It should be emphasized that our model for
scattering waves, y

+' and gf' ', represents
an extreme case. The one-parameter ring-
locus model obtains the maximum diffraction
oscillations in the cross section, and more
complicated models for y, '+' and yf' ' are
expected to produce smoother distributions.
In addition, the introduction of a diffuse sur-
face in the absorption region will cause the
angular distribution to fall off faster with q
than the sharp-cutoff model. Consequently,
the q

' dependence also represents an extreme
case for the average dependence of 0 on q. It
is apparent that the predictions of the model
are not particularly sensitive to the scattering
wave functions, ' and that the principal effect
of recoil and finite-range potentials is to mod-
ify the transfer function, 6; LM(r) in Eqs. (5)
and (6).

The authors are indebted to D. A. Bromley
for stimulating discussions.
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PRODUCTION OF VERY HEAVY ELEMENTS IN THERMONUCLEAR EXPLOSIONS —TEST BARBEL*

Los Alamos Radiochemistry Groupt
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{Received 16 April 1965)

The possibility of production of very heavy
elements by multiple neutron capture in man-
made thermonuclear systems was first demon-
strated in the Mike explosion, in which exposure
of U' ' led to creation of nuclides as heavy as
mass 255.' Unfortunately, the disposition of

fuel and target material in the device greatly
complicated attempts to interpret the mass-
abundance data in terms of fundamental nuclear
parameters (i.e. , a single-valued neutron flux
and an appropriate set of cross sections).

Two recent low-yield underground test ex-
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