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Based on the Ginzburg-Landau theory! of su-
perconductivity, the shielding currents and the
internal magnetic field were calculated as a
function of distance from the surface for type-
II superconductors when the applied magnetic
field is near the upper critical field H 9. There
are two currents near the surface which flow
in opposite directions, whose magnitudes are
very large compared to the vortex currents?
just below H,3. Above H 9 the magnitudes of
these currents are exactly equal, but below H 9
they are slightly different and give rise to a
very small net surface current. The currents
invert their direction within less than one co-
herence length from the surface. When the ap-
plied magnetic field is just below H .9 such that
the condition (H,9-Hg)/H 9 <1 is satisfied,
the smallest magnetic field close to the surface
is considerably smaller than the smallest mag-
netic field in the bulk of the material. However,
when the Ginzburg-Landau parameter « >3, the
maximum deviation of the internal magnetic
field near the surface from the external field
is smaller than 2 %.

Consider a semi-infinite superconducting half-
space with the boundary surface at x =0 and vac-
uum at x<0. The z direction is assumed to be
parallel to the applied magnetic field, and its
magnitude is close to the upper critical field
H.9. Below H 9 our calculations are accurate
within the Abrikosov approximation® (H,.9-Hg)/
H_9<<1. Between H.9 and H.3® our general
results are exact* solutions of the Ginzburg-
Landau theory which is valid near the transi-
tion temperature T.

The normalized Ginzburg-Landau equations
are

. 2
<iV+A>\I/—\I/+|\If|2\I/=O, (1)
—curlcurlA =AU +i/2k(¥*V¥-TVE*),  (2)

where the order parameter ¥ is normalized
with respect to the absolute value of the order
parameter in zero field; the magnetic field with

respect to \/QHC; the vector potential A with
respect to V2H-); the distances with respect
to A; H is the thermodynamic critical field;
X the penetration depth; k=1/¢; and ¢ is the
coherence length. The normalized free ener-
gy of the superconductor at a constant value
of the applied magnetic field H, is!

2
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where b and ¢ are constants and the integral
is extended over the total volume of the super-
conductor.

We assume that near the surface of the met-
al the order parameter can be written as

¥ = Fp (), (4)

where F is a function of x and &, is some as
yet undetermined constant. We assume that
for the above-stated approximation K(x) has
the components (0;H,x +A,(x)+C,/it;0), where
A,(x) is a function of x. We have chosen the
gauge such that at x =0 the function A,(x)=0,
and we assume that C,/u is the vector poten-
tial at x=0. We introduce the parameter p?
=k/H, (=the upper critical field H .9 divided
by the applied field in normalized units), and
the new notation {=xk/i, ¢, =Fk,n/k, and n
= (k/u)?. In the new notation A,(x) becomes
A,(¢)=a(¢)/un and the function F(x) becomes
F(t). We define the quantity ¢,~C,=T. With
the above-chosen vector potential and the def-
initions, Egs. (1) to (3) are

d?F/de? + [u?(1-F?)=(@-T+ ¢)?]F =0, (1a)
nd?a/d® = (a-T + L)F?, (2a)

_ * d_F z 252
FSH—B+C-/0- d§[<d§> +(@-T+¢)°F

da da
- 2F2 _LF2 _( _)
w2F2(1-3 )+nd§ 2+d§ , (3a)
where the integral is proportional to the free
energy of the superconductor per unit area in
the yz plane at constant magnetic field, and
B and C are constants.
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At the surface the Ginzburg-Landau boundary
condition® must be satisfied, which in our case
reduces to

dF /dt=0 at £=0. (5)

When the applied magnetic field is equal to or
larger than the upper critical field H .9, the
additional boundary conditions dF /d¢ =0 and

F =0 at ¢ =~ must be satisfied because no su-
perconductivity exists in the bulk of the materi-
al. When the external magnetic field H, is slight-
ly smaller than the upper critical field H .9,

we may also assume that dF /d¢—0 and F -0
for { - . This is justified if the order param-
eter in the bulk of the metal is very small com-
pared to the order parameter near the surface.
Below H 2 our calculation is valid within the
approximation

k=H

F2(0)> (1%, 12>=KB(1_1/2K2).

(6)
¥p is the order parameter in the bulk of the
metal for a vortex square lattice? and 8=1.18.
It turns out that F(0) is of the order of unity,*
and therefore our calculations are correct with-
in the Abrikosov approximation? (K—HO)/ K<<1,
provided «2 is not too close to 3.

The free energy, Eq. (3a), can be minimized
with respect to I', from which one obtains

i “dtla-T+f]F?=0. (7)

When Eq. (2a) is substituted into Eq. (7) and
integrated, one obtains within our approxima-
tion an additional boundary condition da/d¢ =0
at { =, because the magnetic field at the sur-
face is H,, and hence da/d¢ =0 at x=0. By sub-
stituting for {=7+T into Eq. (3a), one obtains

F._ =B+C ” d [<£)2+(a+n)2F2
SH ()" [\an

—uF?(1-3F?) + nz—z <2 +%%>], (3b)
where F is now F (n;T'). When Eq. (3b) is min-
imized with respect to the parameter I', and
use is made of Eqs. (1a) and (2a), of the Ginz-
burg-Landau boundary condition 8F/8n=0 at
1=1n,(T), and of the condition that 8F /an=0
at 7=, and also F -0 stronger than =2 for

n -, one obtains a more specific relation than
Eq. (7):

I?=u*[1-3F2(0)], (8)
where F(0) is the absolute value of the order
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parameter at the surface of the material. From
Egs. (1a) and (8), and also from Egs. (2a) and
(8), additional boundary conditions are obtained:

d*F /dt? = 3u2F3(0) at £=0, (9a)
~-d%a/d? = (u/n)F?(0)[1-3 F2(0)]V2 at £=0. (9b)

From Egs. (9a) and (5), it follows that |¥F is
always a minimum at the boundary surface for
applied magnetic fields between H.9 and H 3,
and this is also correct within our approxima-
tion just below H 9.

With all these boundary conditions Eqgs. (1a)
and (2a) have been solved simultaneously on
an analog computer.* The values of F(¢) (cc
order parameter), d?a/dt*(c current density),
da/d¢ (« internal magnetic field), and a (< vec-
tor potential) have been calculated for various
values of 1/u? and #n. For 0.8<1/u?<1.1 and
n>1, the functions F(f) are quite similar to
the D(¢) which were calculated previously® (al-
though not the same) with a(¢) and C, neglected
in Eq. (1a). In the present scheme only the quan-
tity I'=¢,~C, is of significance and not £, and
C, individually. The T value [Eq. (8)] is close-
ly related to the ¢, value of reference 5 [Eq. (10)).
In the present work we make use of the approx-
imate values® for F(¢), and we shall estimate
the approximate current and magnetic-field
distribution for the above restricted values of
p and ». The exact numerical solution* will
be published elsewhere.

The current (47/c)j = curlH = curl curlA, and
therefore it follows from Eq. (2a) that

d? 41 |
d—;ﬁ:——"-‘iﬂg), (10)

where j(¢) is the current density normalized
with respect to V2H,./A. At £=0, the current
density is [Eqgs. (9b) and (10)]

(47/¢)j(0) = F2(0)[1-3 F(0)]V2. (11)

At £=¢., the current density reverses its sign.
The reversal point is determined by the rela-
tion I'=a(¢.) +¢,, which can be seen readily
from Eqgs. (2a) and (10). For magnetic fields
larger than or equal to H.9, Eq. (7) is exact-
ly satisfied, which means that near the surface
two currents of equal magnitude are flowing

in opposite directions. Equation (7) will also
hold approximately for magnetic fields just be-
low H g if the order parameter in the bulk of
the material is small compared to the order
parameter near the surface as shown by Eq. (6).
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This relation is satisfied for magnetic fields
near the upper critical field® where F2(0)2 3.
One can see now that the currents have to be
distributed as shown schematically in Figs. 1(a)
and 1(b) when the applied magnetic field is just
slightly smaller than the upper critical field.
Jd¢1 and Jg9 are the currents (per unit length
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Fig. (a) The schematic distribution of the internal
currents for a type-II superconductor in the xy plane
near the boundary between vacuum and metal which is
located at £ =0. (b) The schematic distribution of the
current density j, perpendicular to section@-@ of
(a). The applied magnetic field is parallel to the z
direction, and it is smaller than the upper critical
field H,9 such that (H;9-Hg)/H,9<<1 is satisfied.
The currents Jg1 and J g9 and also Ad g9 and J 7 are
of equal magnitudes, respectively, but Jg1>>J 1.
The approximate distance from the surface is normal-
ized in units of &= (x /) (Ho/Hg9)''2, where ¢ is the
coherence length. (c) The schematic variation of the
internal magnetic field H for section @—@ in (a).

(d) The schematic variation of the square of the abso-
lute value of the order parameter |[¥|% for section

@-® in (a).

in the z direction) obtained from Eq. (7), and
superimposed on them is the current distribu-
tion of a vortex square lattice.? The bulk solu-
tion will presumably establish itself at a dis-
tance from the surface at which the square of
the order parameter of the sheath solution® is
approximately the same as the average of the
square of the order parameter in the bulk; which
is about 3 to 4 or more coherence lengths from
the surface. Between the vortex current Jj
and J;,9 and the surface there must be an ad-
ditional surface current AJy9. This can be seen
readily from the following argument. The line
integral around a closed loop is

fﬁ-dé:"—c”f, (12)

where I=JI is the total current enclosed by a
loop and / the prejection of the path of the loop
onto the z direction. Let us imagine a loop
through B in Fig. 1(a), parallel to the section
@-@® and closed outside the metal (where the
field is H,). At point B the order parameter
¥gl*=0, and therefore Hg=H(, and Eq. (12)
becomes

!JslI—IJSZHIAJszl—lJvll:O. (13)
From Eq. (7) it follows that |Jgq!-1dg9!=0,
and therefore

lJvllzlAJszi. (14)

If the loop through B is rotated slightly around
B, it is clear that AJg9 has to follow a path
similar to that shown in Fig. 1(a). Consider
now A in Fig. 1(a) where the order parameter
is a maximum, and therefore the internal field
in the bulk of the metal is a minimum (H 4
=Hpmin). If we put a loop through A parallel
to section D-@ and close the loop outside the
material, Eq. (12) reduces to

H -H
0  min

=(4n/c)(|Jsll—lJ32|+ IAJSZH |J1)2|), (15)

where from Eq. (7) |Jg1!-1Jg91=0, and from
Eq. (14) 1AJggl=1dyq1. 1,11 and 1,9 can
be calculated from Abrikosov’s theory.? They
are (4n/c)|Jy11=(1/2k)Co*a and (47/c)Jp9]
=(1/2k)C,2(B-a), where C,?=2V2k(k-H,)/
(2k*~1)B and @ =0.8345. From Eq. (15) it fol-
lows that H i, =Ho-v2(k~H()/(2«*~1), which
checks with Abrikosov’s expression® for Hypjp.
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We now estimate the current J¢; from Egs. (2a),

(8), (10), and (11) [area of the “triangle” in
Fig. 1(b)]:

411

__1 g
c sl ufo dt(a-T+OF

z%Fz(o)[l-éFz(O)]. (16)

On the right-hand side of Eq. (16) we have ne-
glected a(Z.) with respect to T{¢, = T-a(Z,)].
This is justified* to the first approximation for
n>1.

The surface currents Jg1 and Jg9 are inde-
pendent of k and a direct consequence of the
Ginzburg-Landau boundary condition. They de-
pend only on the magnitude of the order param-
eter at the surface of the material. The ratio
of the vortex current J,1 to the sheath current
Js1 is

_Jv_l ) Zﬁa(K—HO) a
I | mBRE-DF*(0)[1-2F(0)]
For k>1, |J,q/Jg1!<<1 provided (k-H,)/k <1,

and for K>>1 lJvl/Jsll-O as (k=H,)/x?, wh1ch
shows that the surface currents Jg1 and Jg9
are always much larger than the surface cur-
rent AJgo and the vortex currents J;1 and J,9.
In Fig. 1(b), the area between the ¢ axis and
the current density jy, which corresponds to
the currents Jg1 and Jg9, is much larger than
the areas which correspond to the currents
Adgg and Jy1. The area AJgg is equal to the
area Jj,1 and it is subtracted from Jg9.

Let us now estimate the minimum internal
magnetic field near the surface. The internal
magnetic field is

H=H,+H,(£)=H,(1 +da/d?), (18)

where Hda/dt is the deviation of the internal
field near the surface from the external field.
The minimum field occurs at £ =¢,. To the first
approximation,* a(Z,) < ¢, and therefore T’

~ .. Hence it follows from Egs. (2a), (10),

and (16) that

da gCdza
<d§) =) apdte-
min

e
_4mp [oc.
ey LGS

~ —u—zF’(O)[l—in(o)] 19
2n 2 * (19)

For p~1, F*(0)~3, and k~1, H1/Ho)min
~=0.2; and for p~1and k~3, (H1/HQ)min
~0.02. 1(H{/Hp)! i is appreciably smaller
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for k values larger than 3. From Eq. (19) and
Abrikosov’s theory,? we are able to estimate
the approximate ratio of maximum deviation
of the internal magnetic field from the applied
field in the bulk of the material and near the
surface. We obtain

!HlBlmax

|HlS‘ma.x

V2 2«2\ (k-H,
u2F2<0)[1—%F2<0)]<2x’—1)( p ) (20)

From Eq. (20), it follows that the smallest mag-
netic field near the surface is smaller than the
smallest magnetic field in the bulk of the ma-
terial, provided the applied field is just below
the upper critical field such that the condition
(K-—HO)/K <1 is satisfied and «2 is not too close
to 3. The internal magnetic field is shown sche-
matically in Fig. 1(c) for (k-H,)/k<<1. In

Fig. 1(d), the order parameter corresponding

to section @-@) in Fig. 1(a) is shown schemat-
ically for completeness’ sake.

Near H 9 and between H .9 and H.3, the cur-
rents of the surface sheath for large-« materi-
als are not effective to make the internal field
appreciably different from that of the applied
field. For a long solid cylinder of macroscop-
ic dimensions parallel with its symmetry axis
to the applied magnetic field, two surface cur-
rents of equal magnitude flow around the cylin-
der in opposite directions. The flux is effec-
tively uniformly distributed across the sample
for H,9<Hy<H_3. The inside of the cylinder
is in the normal state and has a finite resistance
and the surface sheath is multiply connected
and has zero resistance. Such a sample will
therefore behave like a perfectly conducting
tube (R=0,B=H;). The flux and the magnetiza-
tion will change irreversibly when the applied
magnetic field is changed.
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SURFACE THERMAL DIFFUSE SCATTERING FROM TUNGSTEN*

Judith Aldagt and R. M. Stern
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We have observed an anisotropic diffuse back-
ground superimposed on the expected low-en-
ergy electron diffraction pattern from the clean
(110) surface of a tungsten single crystal, us-
ing a Varian system, with 230- to 700-eV elec-
trons over the temperature range from 300
to 1600°K. No such structured background ap-
pears in the x-ray diffraction patterns from
tungsten.!

We attribute this anisotropic background to
thermal diffuse scattering from a region near
the surface of the tungsten crystal.

It has been found by Wallis and others®7® that
the introduction of a surface to an infinite elas-
tic continuum and to a one-dimensional chain
crystal introduces surface normal modes in
addition to the bulk modes. The solution for
a three-dimensional crystal with surface does
not exist. These modes must be considered
in the interpretation of the diffraction pattern
because the low penetration of low-energy elec-
trons requires the major part of the scatter-
ing to take place near the surface, where these
modes are important. Surface modes are de-
scribed by amplitudes (“nqj) which decay ex-
ponentially with increasing distance from the
surface into the crystal.

It is assumed that the deviation of the ionic
position from equilibrium (3,,) can be described
by a superposition of the normal modes of vi-
bration of the crystal’"%:

u qu unqj eqj exp(zwqjt +27miq rn),
where éqj is the polarization vector of the pho-
non of wave vector q and polarization j; wgj
is the angular frequency of the phonon; and
T, is the vector position of the nth atom in the
undisplaced crystal.

As a first approximation, the exponential
decay of the surface mode amplitudes will be
neglected, and we will use instead a model

in which the amplitude is represented by a step
function. The scattered intensity from the vi-
brating crystal is then due to the entire pho-
non spectrum, including the surface modes.
We assume that the electron scattering takes
place in this region where the surface modes
have nonzero amplitude, which we define as
the surface layer.

The intensity function can therefore be written
aSIO,B

16/ =17, nze‘zMzNz .

2 =2M
—Ifol e (IO+II+---IN),

where
IO(S/)\) =Znn,anan, exp[2mi(S/))- (rn -r )]

is the Bragg scattering function of the undis-
placed lattice,

1,6/ = lzq]. G, j[’o(s/" +@) +1,(8/x-q)]

is the thermal diffuse scattering intensity func-

tion due to single-phonon processes, and I(S/x)
is the Nth-order phonon-process intensity func-

tion.

cq], = [ /(2mn) |[(kS- qu)2 /wqj] coth(hwqj /2kT)

is the amplitude of the intensity /; of the scat-
tering due to the single phonon ¢j, and §/A

=k-k’ is the scattering vector of the electron
(see Fig. 1). Here a,, is an attenuation factor
describing the decrease in scattering as the
electron beam penetrates the crystal.!! exp(-2M)
is the Debye-Waller factor.

Since I, has appreciable values only when its
argument is a vector in the reciprocal lattice,
we see that the value of I, at /) is due to the
contribution of the single phonon ¢ which satis-
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