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the same as in the static SU(6), the ratios of
the dynamic electric and magnetic moments
are the same as found in the static case. This
proves Eqgs. (1) and (2). Equation (2) is a gen~
eralization, to the matrix element of Gg be-
tween neutron states, of the static result that
the neutron charge is zero. Similar results
can be obtained for other vertex functions.
These results shall be presented elsewhere.
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Peter Stein and Professor Richard Wilson for
helpful advice.
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Recent experiments! have shown that both
the n‘tp and the pp forward-scattering amplitudes
have a substantial real part at high energies
(>6 BeV). While the data obtained so far are
not yet in contradiction with the forward disper-
sion relation, the real part measured is larger
than what was expected, and with the little da-
ta available it does not seem that Ref/E decreases
with energy as it should if local field theory is
valid,?

The purpose of this note is to present sum
rules satisfied by the real part of a crossing-
symmetric forward-scattering amplitude. These
sum rules involve integration of the real part
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up to finite energies only and hold for any en-
ergy. Although these sum rules follow direct-

ly from the dispersion relations, they give for
practical purposes a better tool for testing an-
alyticity, crossing symmetry, and unitarity.
They also show explicitly the fact that a large
and repulsive real part at high energies, if main-
tained for a certain large energy range, will

lead to a contradiction with the dispersion re-
lation.

For concreteness we shall consider only pi-
on-nucleon scattering. We let E be the total
energy of the incident pion in the laboratory
system, and let f, (E) be the forward amplitudes
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for m*p scattering, respectively. We define
the symmetric amplitude f(E) as follows:

f(E) =%[f+(E) +f_(E)]_[nucleon-pole terms]. (1)
It follows from axiomatic field theory that f(E)
satisfies the forward dispersion relation®

1@~ -2 [Car . @

Our sum rules follow from considering the
function g(E) defined by

E[f(E)-£0)]

g(E)= ~——-dE’, ImE=>0, (3)
o E

where the integration path should lie entirely
in the upper-half E plane.? Now, dividing both
sides of (2) by E?, interchanging orders of in-
tegration, and integrating from 0 to E along
the radial direction, we obtain, after taking
the real parts,

E’). |E'+E
Reg(E) __f dE’ Imé(rz In lE/:E (4)
O<argE <m.

We note that for 0< argE < 37, Inl(E’' +E)/
(E’'=E)|= 0. Since Imf(E")>0 for E'>pu, we
see that Reg(E)>0 for all E such that 0 < argE
<37 In particular, for positive real E, we
obtain

fE [Ref(E")-£(0)]
0 E 2

1 E")
f"“ ag L E )y,
The integrand on the right-hand side in (5) is
always positive. If the integration is cut off
at the maximum energy, Em, for which one
has data on the total cross section then one
obtains an inequality which should be satisfied

regardless of the actual value of the total cross
sections at super-high energies:

Imf(E’)
E:z

dE’

E'+FE
E’—E )

(5)

E'+E

In E_E|

(6)

1.[ d
> — ’
Reg(E) = E

It is already evident from (5) why a large and
negative Ref is dangerous to analyticity. The
present data give, roughly, Ref~ —cE for en-
ergies between 7 and 12 BeV, where ¢ is about
1/207 of the total cross section, (o, +0_)
=(4n/k)Imf. Clearly, such a behavior if main-
tained to higher energies will not only make

the left-hand side of (5) smaller, but might
even make it negative for large enough E.

In an actual comparison of (5) or (6) with the
data, one has to know Ref in the unphysical
region 0<E < pu, This can be obtained from
the dispersion relation. It is well known that
the dispersion relation is reliable for low en-
ergies. However, since we already know that
the dispersion relation is fairly reliable for
energies below a few BeV, we can subtract
all the low-energy data from (5). For example,
if for E<E, (E,~1-3 BeV) the dispersion re-
lation is known to be approximately valid, then
a relation like (5) holds with E =E,, Subtract-
ing this relation from (5), we get

fE [Ref (E")-£(0)]
E 2

1 fwdE'Imi-(f )1

dE’

(E'+E)(E'-E,)| @
(E'-E)(E'+E))|’

where E>E,. The integration on the left-hand
side now involves only the high-energy domain.
For E’>E the integrand on the right-hand side
is positive, We can therefore cut off the inte-
gration on the right at some E,, > E>E,, and
obtain a lower bound for the integral on the
left. The only quantity in such an inequality
which is not obtainable immediately from the
data is f(0). The value of f(0) can be taken from
the work of Adler.® This work also shows that
the forward dispersion relation is very reliable
for determining £(0).

The sum rule (6) shares with the dispersion
relation the disadvantageous feature, for large
E, of giving more emphasis to the cross sec-
tion at high energies. This might not be too
serious. Nevertheless, it is possible to give
another sum rule which is not sensitive to the
value of the total cross section for large E’.

This second sum rule is only one of the sev-
eral consequences of the fact that the function
g(E) defined by (3) is univalent (or schlicht)
in the upper-half E plane. Thus g(E) maps the
upper-half E plane conformally into a domain
of the upper-half g plane in a one-to-one fash-
ion.® It is known that univalent functions sat-
isfy various sharp inequalities, and we shall
explore their consequences in a separate pub-
lication. Here, we restrict ourselves to men-
tioning one result similar to (6) which follows
from Koebe’s theorem on univalent functions.”
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For any real positive A, we obtain

fEx [Ref(E’ +i0)—F(0)]
0 E"

aE’> 2 1f)F0), (@)

where EA and A are related by

E)1 ’
f# —H—i—(,l—f——)dE' g, ©)
From the dispersion relation (2) one can always
get a lower bound for the right-hand side of
(8) which is independent of the value of the to-
tal cross section for E’>E,,, Namely, one

can write

LF(@x)=r(0)1 | 21 fEm Imf(E")

it A A ’
A Ty E'(E’2+)\2)dE ’

(10)
Although (8) is obtained from a general inequal-
ity and (6) is obtained by truncating the equality
(5), it is not necessarily true that (6) is much
better than (8). For example, one may take
the simple form Imf(E’)=cE’ and compute the
values of the quantities appearing on the right-
hand sides of (6) and (8). For this simple An-
satz for Imf, it turns out that (6) is better than
(8) by only about 50%. For the actual case we
have the contribution from the 33 resonance
which (6) tends to de-emphasize, while (8) does

not.

A detailed numerical analysis of (6), (7),
and (8) is clearly called for. However, the sim-
ple results of this short note make it clear that
data on Ref should be obtained at all available
energies before any meaningful comparison
could be made.
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It has been shown by a number of authors!
that octet transformation properties of nonlep-
tonic weak interactions with R or RP invariance
lead to sum rules among four independent ob-
servable amplitudes of the nonleptonic baryon
decays. In particular, the following sum rules
are in good agreement with experiment:

p-v amplitudes (S wave),
AMA=p+T17)+2A(E" = A+717)

=V3A(Z* ~p +7%; (1)

p-c amplitudes (P wave),
B(A=p+77)+2B(E~ = A+77)
=V3B(Zt-p +19). (2)

The first relation can be proved without as-

suming R or RP invariance if we assume that
the effective nonleptonic weak interactions are
of the current Xcurrent form and of nonderiva-
tive type.?

In this note, we wish to report some conse-
quences arising from the assumptions that
(i) strong interactions are approximately SU(6)
invariant; (ii) nonleptonic weak interactions
transform like a member of an adjoint repre-
sentation under SU(6), i.e., parity-nonconserv-
ing (p-v) and parity-conserving (p-c) interac-
tions transform as (8,1) and (8, 3) members
of the 35-dimensional representations, respec-
tively; and (iii) weak interactions are invariant
under the operation of CP.

It has been proposed by Giirsey, Radicati,
and Pais® that octet and decuplet baryons are
grouped together forming the bases of a 56-



